Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_4_a4, author = {S. A. Lozhkin and V. S. Zizov}, title = {Asymptotically sharp estimates for the area of multiplexers in the cellular circuit model}, journal = {Diskretnaya Matematika}, pages = {52--68}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a4/} }
TY - JOUR AU - S. A. Lozhkin AU - V. S. Zizov TI - Asymptotically sharp estimates for the area of multiplexers in the cellular circuit model JO - Diskretnaya Matematika PY - 2022 SP - 52 EP - 68 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a4/ LA - ru ID - DM_2022_34_4_a4 ER -
S. A. Lozhkin; V. S. Zizov. Asymptotically sharp estimates for the area of multiplexers in the cellular circuit model. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 52-68. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a4/
[1] Kravtsov S. S., “O realizatsii funktsii algebry logiki v odnom klasse skhem iz funktsionalnykh i kommutatsionnykh elementov”, Problemy kibernetiki, 19, Nauka, M., 1967, 285—292
[2] Albrekht A., “O skhemakh iz kletochnykh elementov”, Probl. kibernetiki, 33, Nauka, M., 1975, 209—214
[3] Gribok S. V., “Ob odnom bazise dlya skhem iz kletochnykh elementov”, Vestnik Mosk. un-ta, ser. 15. Vychisl. matem. i kibernetika., 4 (1999), 36–39 | MR | Zbl
[4] Shkalikova N. A., “O realizatsii bulevykh funktsii skhemami iz kletochnykh elementov”, Matematicheskie voprosy kibernetiki, 2, Nauka, M., 1989, 177—197 | MR
[5] Hromkovic J., Lozkin S., Rybko A., Sapozhenko A., Skalikova N., “Lower bounds on the area complexity of Boolean circuits”, Theor. Comput. Sci, 97 (1992), 285–300 | DOI | MR | Zbl
[6] Lozhkin S. A., Pashkovskii A. M., “O slozhnosti realizatsii nekotorykh sistem funktsii algebry logiki kletochnymi i planarnymi skhemami”, Probl. teor. kibernetiki, IX Vsesoyuzn. konf., Tez. dokl., chast 1 (sentyabr 1990 g. Volgograd), 1991, 28
[7] Lozhkin S. A., Evdokimova T. N., “O slozhnosti realizatsii nekotorykh sistem funktsii v klasse obobschennykh kletochnykh skhem”, Mater. VIII Mezhdunar. sem. «Diskretnaya matematika i ee prilozheniya» (2–6 fevralya 2004 g.), Izd-vo mekh.-matem. f-ta MGU, M., 2004, 61–63
[8] Lozhkin S. A., “O sootnoshenii mezhdu slozhnostyu i ploschadyu kletochnykh deshifratorov”, Problemy teor. kibernetiki. Tez. dokl. XIV Mezhdunar. konf. (Penza, 23-28 maya 2005 g.), Izd-vo mekh.-matem. f-ta MGU, M., 2005, 88
[9] Gribok S. V., “Ob asimptotike slozhnosti kletochnogo kontaktnogo deshifratora”, Vestnik Nizhegor. gos. un-ta. Matem. modelir. i optim. upr., 1:22 (2000), 68–72, izd-vo Nizhegor. un-ta, N.Novgorod
[10] Lozhkin S. A., Zizov V. S., “Utochnennye otsenki slozhnosti deshifratora v modeli kletochnykh skhem iz funktsionalnykh i kommutatsionnykh elementov”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 162:3 (2020), 322–334 | MR
[11] Lozhkin S. A., “Otsenki vysokoi stepeni tochnosti dlya slozhnosti upravlyayuschikh sistem iz nekotorykh klassov”, Matem. voprosy kibernetiki, 6, Nauka, Fizmatlit, M., 1996, 189–214 | MR
[12] Zhukov D. A., “O vychislenii chastichnykh bulevykh funktsii kletochnymi skhemami”, Diskr. analiz i issled. operatsii. Ser. 1, 11:2 (2004), 32—40 | MR | Zbl
[13] Yablonskaya A. Yu., “O slozhnosti realizatsii bulevykh funktsii iz invariantnykh klassov kletochnymi skhemami ogranichennoi vysoty s kratnymi vkhodami”, Vestnik NNGU, 1:4 (2012), 225–231
[14] Thompson C. D., A complexity theory for VLSI, PhD thesis, 1980, 138 pp. | MR
[15] Chazelle B., Monier L., “A model of computation for VLSI with related complexity results”, J. ACM, 32:3 (1985), 573–588 | DOI | MR | Zbl
[16] Bilardi G., Pracchi M., Preparata F., “A critique of network speed in VLSI models of computation”, IEEE J. Solid-State Circuits, 17 (1982), 696–702 | DOI
[17] Cheremisin O. V., “Ob aktivnosti skhem iz kletochnykh elementov, realizuyuschikh sistemu vsekh kon'yunktsii”, Diskretnaya matematika, 15:2 (2003), 113–122 | MR | Zbl
[18] Kalachev G. V., “Poryadok moschnosti ploskikh skhem, realizuyuschikh bulevy funktsii”, Diskretnaya matematika, 26:1 (2014), 49—74 | Zbl
[19] Kalachev G. V., “Ob odnovremennoi optimizatsii ploschadi, moschnosti i glubiny ploskikh skhem, realizuyuschikh chastichnye bulevy operatory”, Intellektualnye sistemy. Teoriya i prilozheniya, 20:2 (2016), 203–266 | MR
[20] Kalachev G. V., O moschnostnoi slozhnosti ploskikh skhem, diss. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2017, 167 pp.
[21] Alekhina M. A., Rybakov A. V., “Sintez i slozhnost asimptoticheski optimalnykh po nadezhnosti kletochnykh skhem”, Izv. VUZov. Povolzh. reg. Fiz.-matem. nauki, 4:32 (2014) | Zbl
[22] Korovin V. V., “O slozhnosti realizatsii universalnoi funktsii skhemami iz funktsionalnykh elementov”, Diskretnaya matematika, 7:2 (1995), 95–102 | Zbl
[23] Rumyantsev P. V., “O slozhnosti realizatsii multipleksornoi funktsii skhemami iz funktsionalnykh elementov”, Probl. teor. kibernetiki. Tez. dokl. XIV mezhdunar. konf. (Penza, 23–28 maya 2005 g.), 2005, 133
[24] Rybakov A. V., “Metod sinteza nadezhnykh kletochnykh skhem s ispolzovaniem funktsii vybora”, Izv. VUZov. Povolzh. reg. Fiz.-matem. nauki, 2:34 (2015)
[25] Lozhkin S. A., Lektsii po osnovam kibernetiki, Izd. otdel f-ta VMiK MGU im. M.V. Lomonosova, M., 2004, 251 pp.