Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_4_a1, author = {K. Yu. Denisov}, title = {Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants}, journal = {Diskretnaya Matematika}, pages = {14--27}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/} }
TY - JOUR AU - K. Yu. Denisov TI - Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants JO - Diskretnaya Matematika PY - 2022 SP - 14 EP - 27 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/ LA - ru ID - DM_2022_34_4_a1 ER -
%0 Journal Article %A K. Yu. Denisov %T Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants %J Diskretnaya Matematika %D 2022 %P 14-27 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/ %G ru %F DM_2022_34_4_a1
K. Yu. Denisov. Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 14-27. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/
[1] Kozlov M. V., “O bolshikh ukloneniyakh vetvyaschikhsya protsessov v sluchainoi srede: geometricheskoe raspredelenie chisla potomkov”, Diskretnaya matematika, 18:2 (2006), 29–47 | Zbl
[2] Kozlov M. V., “O bolshikh ukloneniyakh strogo dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede s geometricheskim raspredeleniem chisla potomkov”, Teoriya veroyatn. i ee primen., 54:3 (2009), 439–465 | Zbl
[3] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Process. Related Fields, 15:3 (2009), 493–524 | MR | Zbl
[4] Buraczewski D., Dyszewski P., Precise large deviation estimates for branching process in random environment, 2017, arXiv: 1706.03874
[5] Shklyaev A. V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede.II”, Diskretnaya matematika, 32:1 (2020), 135–156 | MR
[6] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Vetvyaschiesya protsessy, sluchainye bluzhdaniya i smezhnye voprosy, Trudy MIAN, 282, MAIK «Nauka/Interperiodika», M, 2013, 22–41 | MR
[7] Borovkov A. A., Asimptoticheskii analiz sluchainykh bluzhdanii. Bystroubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013, 447 pp.
[8] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Prob., 12:1 (1975), 39–46 | DOI | MR | Zbl
[9] Denisov K. Yu., “Asimptotika lokalnykh veroyatnostei nizhnikh uklonenii vetvyaschegosya protsessa v sluchainoi srede pri geometricheskikh raspredeleniyakh chisel potomkov”, Diskretnaya matematika, 32:3 (2020), 24–37