Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 14-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local probabilities of lower deviations for branching process $Z_{n} = X_{n, 1} + \dotsb + X_{n, Z_{n-1}}$ in random environment $\boldsymbol\eta$. We assume that $\boldsymbol\eta$ is a sequence of independent identically distributed variables and for fixed $\boldsymbol\eta$ the variables $X_{i,j}$ are independent and have geometric distributions. We suppose that steps $\xi_i$ of the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$ has positive mean and satisfies left-side Cramér condition: ${\mathbf E}\exp(h\xi_i) \infty$ if $h^{-}$ for some $h^{-} -1$. Under these assumptions we find the asymptotic of the local probabilities ${\mathbf P}\left( Z_n = \lfloor\exp\left(\theta n\right)\rfloor \right)$, $n\to\infty$, for $\theta \in (\max(m^{-},0);m(-1))$ and for $\theta$ in a neighbourhood of $m(-1)$, where $m^{-}$ and $m(-1)$ are some constants.
Keywords: branching processes, random environments, random walks, Cramér condition, lower deviations, large deviations, local theorems.
@article{DM_2022_34_4_a1,
     author = {K. Yu. Denisov},
     title = {Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants},
     journal = {Diskretnaya Matematika},
     pages = {14--27},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/}
}
TY  - JOUR
AU  - K. Yu. Denisov
TI  - Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 14
EP  - 27
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/
LA  - ru
ID  - DM_2022_34_4_a1
ER  - 
%0 Journal Article
%A K. Yu. Denisov
%T Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants
%J Diskretnaya Matematika
%D 2022
%P 14-27
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/
%G ru
%F DM_2022_34_4_a1
K. Yu. Denisov. Asymptotic local lower deviations of strictly supercritical branching process in a random environment with geometric distributions of descendants. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 14-27. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a1/

[1] Kozlov M. V., “O bolshikh ukloneniyakh vetvyaschikhsya protsessov v sluchainoi srede: geometricheskoe raspredelenie chisla potomkov”, Diskretnaya matematika, 18:2 (2006), 29–47 | Zbl

[2] Kozlov M. V., “O bolshikh ukloneniyakh strogo dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede s geometricheskim raspredeleniem chisla potomkov”, Teoriya veroyatn. i ee primen., 54:3 (2009), 439–465 | Zbl

[3] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Process. Related Fields, 15:3 (2009), 493–524 | MR | Zbl

[4] Buraczewski D., Dyszewski P., Precise large deviation estimates for branching process in random environment, 2017, arXiv: 1706.03874

[5] Shklyaev A. V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede.II”, Diskretnaya matematika, 32:1 (2020), 135–156 | MR

[6] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Vetvyaschiesya protsessy, sluchainye bluzhdaniya i smezhnye voprosy, Trudy MIAN, 282, MAIK «Nauka/Interperiodika», M, 2013, 22–41 | MR

[7] Borovkov A. A., Asimptoticheskii analiz sluchainykh bluzhdanii. Bystroubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013, 447 pp.

[8] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Prob., 12:1 (1975), 39–46 | DOI | MR | Zbl

[9] Denisov K. Yu., “Asimptotika lokalnykh veroyatnostei nizhnikh uklonenii vetvyaschegosya protsessa v sluchainoi srede pri geometricheskikh raspredeleniyakh chisel potomkov”, Diskretnaya matematika, 32:3 (2020), 24–37