Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2022_34_4_a0, author = {G. A. Bakai}, title = {.On large deviations of the moment of attaining far level by the random walk in a random environment}, journal = {Diskretnaya Matematika}, pages = {3--13}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/} }
TY - JOUR AU - G. A. Bakai TI - .On large deviations of the moment of attaining far level by the random walk in a random environment JO - Diskretnaya Matematika PY - 2022 SP - 3 EP - 13 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/ LA - ru ID - DM_2022_34_4_a0 ER -
G. A. Bakai. .On large deviations of the moment of attaining far level by the random walk in a random environment. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/
[1] Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl
[2] Kesten H., Kozlov M. V, Spitzer F., “A limit law for random walk in a random environment”, Compositio mathematica, 30:2 (1975), 145–168 | MR | Zbl
[3] Comets F., Gantert N., Zeitouni O., “Quenched, annealed and functional large deviations for one-dimensional random walk in random environment”, Probab. Theory Relat. Fields, 118:1 (2000), 65–114 | DOI | MR | Zbl
[4] Afanasev V. I., “Dvugranichnaya zadacha dlya sluchainogo bluzhdaniya v sluchainoi srede”, Teoriya veroyatn. i ee primen., 63:3 (2018), 417–430
[5] Greven A., den Hollander F., “Large deviations for a random walk in random environment”, Ann. Probab., 22:3 (1994), 1381–1428 | DOI | MR | Zbl
[6] Dembo A., Peres Y., Zeitouni O., “Tail estimates for one-dimensional random walk in random environment”, Commun. Math. Physics, 181 (1996), 667–683 | DOI | MR | Zbl
[7] Mogulskii A. A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 16 (2019), 21–41 | Zbl
[8] Bakai G. A., “O kharakterizatsii veroyatnostei bolshikh uklonenii dlya regeneriruyuschikh posledovatelnostei”, Trudy MIAN, 316 (2022), 47–63 | MR
[9] Schaefer H., “Some spectral properties of positive linear operators”, Pacific J. Math., 10:3 (1960), 1009–1019 | DOI | MR | Zbl
[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR
[11] Marek I., “Frobenius theory of positive operators: comparison theorems and applications”, SIAM J. Appl. Math., 19:3 (1970), 607–628 | DOI | MR | Zbl