.On large deviations of the moment of attaining far level by the random walk in a random environment
Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove local limit theorems on large deviations for the moment $T_n$ of attaining the level $n\in\mathbb{N}$ by the random walk in a random environment. Exact asymptotics of probabilities ${\mathbf P}(T_n=k)$ are obtained for values of the parameter $k$ corresponding to the large deviations zone.
Keywords: local theorems, large deviatios, random walks in random environment.
@article{DM_2022_34_4_a0,
     author = {G. A. Bakai},
     title = {.On large deviations of the moment of attaining far level by the random walk in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/}
}
TY  - JOUR
AU  - G. A. Bakai
TI  - .On large deviations of the moment of attaining far level by the random walk in a random environment
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 3
EP  - 13
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/
LA  - ru
ID  - DM_2022_34_4_a0
ER  - 
%0 Journal Article
%A G. A. Bakai
%T .On large deviations of the moment of attaining far level by the random walk in a random environment
%J Diskretnaya Matematika
%D 2022
%P 3-13
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/
%G ru
%F DM_2022_34_4_a0
G. A. Bakai. .On large deviations of the moment of attaining far level by the random walk in a random environment. Diskretnaya Matematika, Tome 34 (2022) no. 4, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2022_34_4_a0/

[1] Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[2] Kesten H., Kozlov M. V, Spitzer F., “A limit law for random walk in a random environment”, Compositio mathematica, 30:2 (1975), 145–168 | MR | Zbl

[3] Comets F., Gantert N., Zeitouni O., “Quenched, annealed and functional large deviations for one-dimensional random walk in random environment”, Probab. Theory Relat. Fields, 118:1 (2000), 65–114 | DOI | MR | Zbl

[4] Afanasev V. I., “Dvugranichnaya zadacha dlya sluchainogo bluzhdaniya v sluchainoi srede”, Teoriya veroyatn. i ee primen., 63:3 (2018), 417–430

[5] Greven A., den Hollander F., “Large deviations for a random walk in random environment”, Ann. Probab., 22:3 (1994), 1381–1428 | DOI | MR | Zbl

[6] Dembo A., Peres Y., Zeitouni O., “Tail estimates for one-dimensional random walk in random environment”, Commun. Math. Physics, 181 (1996), 667–683 | DOI | MR | Zbl

[7] Mogulskii A. A., “Lokalnye teoremy dlya arifmeticheskikh obobschennykh protsessov vosstanovleniya pri vypolnenii usloviya Kramera”, Sib. elektron. matem. izv., 16 (2019), 21–41 | Zbl

[8] Bakai G. A., “O kharakterizatsii veroyatnostei bolshikh uklonenii dlya regeneriruyuschikh posledovatelnostei”, Trudy MIAN, 316 (2022), 47–63 | MR

[9] Schaefer H., “Some spectral properties of positive linear operators”, Pacific J. Math., 10:3 (1960), 1009–1019 | DOI | MR | Zbl

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[11] Marek I., “Frobenius theory of positive operators: comparison theorems and applications”, SIAM J. Appl. Math., 19:3 (1970), 607–628 | DOI | MR | Zbl