On the complexity of realizations of Boolean functions in some classes of hypercontact circuits
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 90-113

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classes $\operatorname{\text{EM}}_F^{(n)}$ of extended matrices over rings of polynomials with idempotent variables, the following subclasses (hypercontact circuits) are defined: $\operatorname{\text{HC}}_F^{(n)}$ (over an arbitrary field $F$) and $\operatorname{\text{HC}}_Z^{(n)}$ (over the ring of integers), which algebraically extend the class of incident matrices of contact circuits ($\operatorname{\text{CC}}^{(n)}$) and realize arbitrary $n$-place Boolean functions with contact complexity smaller than $3\sqrt{2}\cdot2^{n/2}$. A lower estimate of the same order is obtained for the corresponding Shannon function in the class $\operatorname{\text{HC}}_{F_q}^{(n)}$ over an arbitrary finite field $F_q$. For matrices from the class $\operatorname{\text{HC}}_Z^{(n)}$, we find a physical interpretation in the form of incident-linking matrices of contact-transformer circuits.
Keywords: polynomial with idempotent variables, hypercontact circuit, contact hypergraph, contact matroid, incidence-linking matrix, contact-transformer circuit
@article{DM_2022_34_3_a7,
     author = {Yu. G. Tarazevich},
     title = {On the complexity of realizations of {Boolean} functions in some classes of hypercontact circuits},
     journal = {Diskretnaya Matematika},
     pages = {90--113},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a7/}
}
TY  - JOUR
AU  - Yu. G. Tarazevich
TI  - On the complexity of realizations of Boolean functions in some classes of hypercontact circuits
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 90
EP  - 113
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a7/
LA  - ru
ID  - DM_2022_34_3_a7
ER  - 
%0 Journal Article
%A Yu. G. Tarazevich
%T On the complexity of realizations of Boolean functions in some classes of hypercontact circuits
%J Diskretnaya Matematika
%D 2022
%P 90-113
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_3_a7/
%G ru
%F DM_2022_34_3_a7
Yu. G. Tarazevich. On the complexity of realizations of Boolean functions in some classes of hypercontact circuits. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 90-113. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a7/