Limit joint distribution of the statistics of >, within a Block>> and the Longest Run of Ones in a Block>>
Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 70-84

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence consisting of independent random variables having a Bernoulli distribution with the parameter $p = \frac12$ the limit joint distribution of the statistics $T_1, T_2, T_3$ of the following three tests of the NIST package is obtained: «Monobit Test», «Frequency Test within a Block» and «Test for the Longest Run of Ones in a Block». It is proved that the covariance matrix $C$ of the limit distribution of the vector $(T_1, T_2, T_3)$ satisfies the relations $C_{12}=C_{21}=C_{13}=C_{31}=0$, $C_{23}=C_{32} \ge 0$. For arbitrary $p$ necessary and sufficient conditions for asymptotic uncorrelatedness and\slash or asymptotic independence of these statistics are obtained. The limit behavior of the vector $(T_1, T_2, T_3)$ is described for a wide class of values $p \neq \frac12$.
Keywords: joint distributions of statistics, NIST package, goodness-of-fit tests, «Monobit Test», «Frequency Test within a Block», «Test for the Longest Run of Ones in a Block», asymptotically uncorrelated statistics, asymptotically independent statistics.
@article{DM_2022_34_3_a5,
     author = {M. P. Savelov},
     title = {Limit joint distribution of the statistics of {<<Monobit} test>>, {<<Frequency} {Test} within a {Block>>} and {<<Test} for the {Longest} {Run} of {Ones} in a {Block>>}},
     journal = {Diskretnaya Matematika},
     pages = {70--84},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_3_a5/}
}
TY  - JOUR
AU  - M. P. Savelov
TI  - Limit joint distribution of the statistics of <>, <> and <>
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 70
EP  - 84
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_3_a5/
LA  - ru
ID  - DM_2022_34_3_a5
ER  - 
%0 Journal Article
%A M. P. Savelov
%T Limit joint distribution of the statistics of <>, <> and <>
%J Diskretnaya Matematika
%D 2022
%P 70-84
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_3_a5/
%G ru
%F DM_2022_34_3_a5
M. P. Savelov. Limit joint distribution of the statistics of <>, <> and <>. Diskretnaya Matematika, Tome 34 (2022) no. 3, pp. 70-84. http://geodesic.mathdoc.fr/item/DM_2022_34_3_a5/