On bases of all closed classes of Boolean vector functions
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 106-119
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The functional system of Boolean vector functions with the naturally defined superposition operation is considered. It is shown that every closed class of this system admits a finite basis.
Keywords: Boolean vector function
Mots-clés : superposition.
@article{DM_2022_34_2_a8,
     author = {V. A. Taimanov},
     title = {On bases of all closed classes of {Boolean} vector functions},
     journal = {Diskretnaya Matematika},
     pages = {106--119},
     year = {2022},
     volume = {34},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a8/}
}
TY  - JOUR
AU  - V. A. Taimanov
TI  - On bases of all closed classes of Boolean vector functions
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 106
EP  - 119
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a8/
LA  - ru
ID  - DM_2022_34_2_a8
ER  - 
%0 Journal Article
%A V. A. Taimanov
%T On bases of all closed classes of Boolean vector functions
%J Diskretnaya Matematika
%D 2022
%P 106-119
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/DM_2022_34_2_a8/
%G ru
%F DM_2022_34_2_a8
V. A. Taimanov. On bases of all closed classes of Boolean vector functions. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 106-119. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a8/

[1] Yablonskii S.V., Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2003, 384 pp.

[2] Malcev I., “Graduated products of Post algebras”, Note on multiple-valued logic, 18:13 (1995), 1–4

[3] Malcev I., “Coordinated products of iterative algebras”, Proc. VIII Int. Conf. on logic and Computer Science, Novi Sad, Yugoslavia, 1997, 1–2 | MR

[4] Marchenkov S.S., “O polnote v sisteme $P_3 \times P_3$”, Diskretnaya matematika, 4:1 (1992), 126–145 | Zbl

[5] Marchenkov S.S., “O klassakh Slupetskogo v sistemakh $P_k \times \dots \times P_l$”, Diskretnaya matematika, 4:3 (1992), 135–148 | MR | Zbl

[6] Marchenkov S.S., “O predpolnykh klassakh v dekartovykh proizvedeniyakh $P_2$ i $P_3$”, Diskretnaya matematika, 6:2 (1994), 21–42 | Zbl

[7] Romov B.A., “Algoritm resheniya problemy polnoty v klasse vektornykh funktsionalnykh sistem”, Matem. modeli slozhnykh sistem., IK AN USSR, Kiev, 1973, 151–155

[8] Romov B.A., “O reshetke podalgebr pryamykh proizvedenii algebr Posta konechnoi stepeni”, Matem. modeli slozhnykh sistem., IK AN USSR, Kiev, 1973, 156–168

[9] Romov B.A., “O polnote na kvadrate funktsii algebry logiki i v sistemakh $P_k \times P_l$”, Kibernetika, 4 (1987), 9–14 | MR | Zbl

[10] Romov B.A., “Ob odnoi serii maksimalnykh podalgebr pryamykh proizvedenii algebr konechnoznachnykh logik”, Kibernetika, 3 (1989), 11–16 | MR | Zbl

[11] Romov B.A., “O funktsionalnoi polnote v sisteme $P_2 \times P_k$”, Kibernetika, 1 (1991), 1–8 | Zbl

[12] Romov B.A., “The completness problem on the product of algebras of finite-valued logic”, Proc. 24th Int. Symposium on Multiple-Valued Logic, IEEE, Boston, 1994, 184–186 | DOI

[13] Taimanov V.A., “O dekartovykh stepenyakh $P_2$”, Dokl. AN SSSR, 270:6 (1983), 1327–1330 | MR | Zbl

[14] Taimanov V.A., “O bazisakh zamknutykh klassov v $P_k \times P_m$”, Tezisy dokl. VIII Vsesoyuzn. konf. “Problemy teoret. kibernetiki”, Irkutsk, 1985, 188–189

[15] Taimanov V.A., “O bazisakh zamknutykh klassov vektor-funktsii mnogoznachnoi logiki”, Diskretnaya matematika, 28:2 (2016), 127–132 | MR

[16] Taimanov V.A., “O nekotorykh svoistvakh vektor-funktsii algebry logiki”, Diskretnaya matematika, 30:1 (2018), 114–128

[17] Taimanov V.A., “O bazisakh zamknutykh klassov vektor-funktsii algebry logiki”, Diskretnaya matematika, 31:3 (2019), 78–92

[18] Yablonskii S.V., Gavrilov G.P., Kudryavtsev V.B., Funktsii algebry logiki i klassy Posta, Nauka, M., 1966, 120 pp.

[19] Post E.L., “Introduction to a general theory of elementary propositions”, Amer. J. Math., 43 (1921), 163–185 | DOI | MR | Zbl

[20] Post E.L., Two-valued iterative systems of mathematical logic, Princeton Univ. Press, Princeton, 1941, 122 pp. | MR | Zbl

[21] Yanov Yu.I., Muchnik A.A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl