Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups
Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 50-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonabelian 2-groups $H$ containing a cyclic subgroup of index 2 are dihedral groups, generalized quaternion groups, quasidihedral groups and modular maximal-cyclic groups. Earlier the authors introduced the classes of piecewise quasiaffine transformations on an arbitrary nonabelian 2-group $H$ with a cyclic subgroup of index 2. For the generalized group of quaternions of order $2^m$ we have obtained a complete classification of orthomorphisms, complete transformations and their left analogues in the class of piecewise quasiaffine transformations under consideration. This paper presents a similar classification for the remaining three groups (the dihedral group, the quasidihedral group and the modular maximal-cyclic group).
Keywords: orthomorphism, complete transformation, dihedral group, quasidihedral group, modular maximal-cyclic group
@article{DM_2022_34_2_a5,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups},
     journal = {Diskretnaya Matematika},
     pages = {50--66},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_2_a5/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 50
EP  - 66
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_2_a5/
LA  - ru
ID  - DM_2022_34_2_a5
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups
%J Diskretnaya Matematika
%D 2022
%P 50-66
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_2_a5/
%G ru
%F DM_2022_34_2_a5
B. A. Pogorelov; M. A. Pudovkina. Classes of piecewise quasiaffine transformations on dihedral, quasidihedral and modular maximal-cyclic 2-groups. Diskretnaya Matematika, Tome 34 (2022) no. 2, pp. 50-66. http://geodesic.mathdoc.fr/item/DM_2022_34_2_a5/

[1] Johnson D. M., Dulmage A. L., Mendelsohn N. S., “Orthomorphisms of groups and orthogonal Latin squares, I”, Canad. J. Math., 13 (1961), 356–372 | DOI | MR | Zbl

[2] Denes J., Keedwell A. D., Latin Squares and Their Applications, English Univ. Press, London, 1974, 547 pp. | MR

[3] Evans A. B., Orthomorphism Graphs of Groups, Springer-Verlag, Berlin, 1992, VIII+116 pp. | MR | Zbl

[4] Kholl M., Teoriya grupp, Izdatelstvo inostrannoi literatury, M., 1962, 468 pp.

[5] Pogorelov B.A., Pudovkina M.A., “Klassy kusochno-kvaziaffinnykh preobrazovanii na obobschennoi 2-gruppe kvaternionov”, Diskretnaya matematika, 34:1 (2022), 103–125

[6] Berkovich Y., Groups of Prime Power Order, v. 1, de Gruyter Expos. in Math., 46, W. de Gruyter GmbH Co., Berlin, 2008, 532 pp. | MR | Zbl

[7] Berkovich Y., Groups of Prime Power Order, v. 3, de Gruyter Expos. in Math., 56, W. de Gruyter GmbH Co., Berlin, 2011, 666 pp. | DOI | MR | Zbl

[8] Pogorelov B.A., Pudovkina M.A., “Svoistva regulyarnykh predstavlenii neabelevykh 2-grupp s tsiklicheskoi podgruppoi indeksa 2”, Matematicheskie voprosy kriptografii, 12:4 (2021), 65–85 | Zbl