On some limit properties for the power series distribution
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 88-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider random variables with the power series distribution which is often used in the study of the generalized allocation scheme. We establish some asymptotic properties which include law of large numbers, moderate deviation principle, almost sure central limit theorem and the rate of convergence in the local limit theorem. These results supplements results obtained by A. V.\;Kolchin.
Keywords: Allocation scheme, power series distribution, law of large numbers, almost sure central limit theorem, moderate deviation principle, local limit theorem.
@article{DM_2022_34_1_a6,
     author = {Yu. Miao and Ya. Tang and X. Qu and G. Yang},
     title = {On some limit properties for the power series distribution},
     journal = {Diskretnaya Matematika},
     pages = {88--102},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a6/}
}
TY  - JOUR
AU  - Yu. Miao
AU  - Ya. Tang
AU  - X. Qu
AU  - G. Yang
TI  - On some limit properties for the power series distribution
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 88
EP  - 102
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_1_a6/
LA  - ru
ID  - DM_2022_34_1_a6
ER  - 
%0 Journal Article
%A Yu. Miao
%A Ya. Tang
%A X. Qu
%A G. Yang
%T On some limit properties for the power series distribution
%J Diskretnaya Matematika
%D 2022
%P 88-102
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_1_a6/
%G ru
%F DM_2022_34_1_a6
Yu. Miao; Ya. Tang; X. Qu; G. Yang. On some limit properties for the power series distribution. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 88-102. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a6/

[1] Billingsley P., Convergence of Probability Measures, John Wiley Sons, Inc., New York, 1968, 253 pp. | MR | Zbl

[2] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, 2nd edition, Springer, New York, 1998, 416 pp. | MR | Zbl

[3] Dudley R. M., Real Analysis and Probability, 2nd edition, Cambridge Univ. Press, Cambridge, 2002, 566 pp. | MR | Zbl

[4] Kolchin A. V., “On limit theorems for the generalised allocation scheme”, Discrete Math. Appl., 13:6 (2003), 627–636 | DOI | MR | Zbl

[5] Kolchin V. F., Sevastýanov B. A., Chistyakov V. P., Random Allocations, V. H. Winston Sons, Washington, DC, 1978, 262 pp. | MR | Zbl

[6] Kolchin V. F., Random Graphs, Cambridge Univ. Press, Cambridge, 1999, 252 pp. | MR | Zbl

[7] Park C. J., “A note on the classical occupancy problem”, Ann. Math. Statist., 43:5 (1972), 1698–1701 | DOI | MR | Zbl

[8] Peligrad M., Shao Q. M., “A note on the almost sure central limit theorem for weakly dependent random variables”, Statist. Probab. Lett., 22:2 (1995), 131–136 | DOI | MR | Zbl

[9] Petrov V. V., Sums of Independent Random Variables, Springer-Verlag, New York Heidelberg Berlin, 1975, 345 pp. | MR | Zbl

[10] Weiss I., “Limiting distributions in some occupancy problems”, Ann. Math. Statist., 22:3 (1958), 878–884 | DOI | MR