On algebraicity of lattices of $\omega$-fibred formations of finite groups
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 23-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonempty set $\omega$ of primes, V. A. Vedernikov had constructed $\omega$-fibred formations of groups via function methods. We study lattice properties of $\omega$-fibred formations of finite groups with direction $\delta$ satisfying the condition $\delta_{_{0}} \leq \delta$. The lattice $\omega\delta F_{\theta}$ of all $\omega$-fibred formations with direction $\delta$ and $\theta$-valued $\omega$-satellite is shown to be algebraic under the condition that the lattice of formations $\theta$ is algebraic. As a corollary, the lattices $\omega\delta F$, $\omega\delta F_{\tau}$, $\tau\omega\delta F$, $\omega\delta^{n} F$ of $\omega$-fibred formations of groups are shown to be algebraic.
Keywords: finite group, class of groups, formation groups, lattice, algebraic lattice, lattice of formations.
@article{DM_2022_34_1_a2,
     author = {S. P. Maksakov and M. M. Sorokina},
     title = {On algebraicity of lattices of $\omega$-fibred formations of finite groups},
     journal = {Diskretnaya Matematika},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a2/}
}
TY  - JOUR
AU  - S. P. Maksakov
AU  - M. M. Sorokina
TI  - On algebraicity of lattices of $\omega$-fibred formations of finite groups
JO  - Diskretnaya Matematika
PY  - 2022
SP  - 23
EP  - 35
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2022_34_1_a2/
LA  - ru
ID  - DM_2022_34_1_a2
ER  - 
%0 Journal Article
%A S. P. Maksakov
%A M. M. Sorokina
%T On algebraicity of lattices of $\omega$-fibred formations of finite groups
%J Diskretnaya Matematika
%D 2022
%P 23-35
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2022_34_1_a2/
%G ru
%F DM_2022_34_1_a2
S. P. Maksakov; M. M. Sorokina. On algebraicity of lattices of $\omega$-fibred formations of finite groups. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 23-35. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a2/

[1] Birkgof G., Teoriya reshetok, Perevod s angl., Moskva, Nauka, 1984, 568 pp.

[2] Vedernikov V. A., Sorokina M. M., “$\Omega$-rassloennye formatsii i klassy Fittinga konechnykh grupp”, Diskretnaya matematika, 11:5 (2001), 507–527 | MR | Zbl

[3] Vedernikov V. A., Sorokina M. M., “$\omega$-veernye formatsii i klassy Fittinga konechnykh grupp”, Matematicheskie zametki, 71:1 (2002), 43–60 | MR | Zbl

[4] Vedernikov V. A., “O novykh tipakh $\omega$-veernykh formatsii konechnykh grupp”, V sb. Ukr. matem. kongress – 2001, Pratsi, Kiiv, 2002, 36–45 | MR

[5] Vorobev N. N., Tsarev A.A., “O modulyarnosti reshetki $\tau$-zamknutykh $n$-kratno $\omega$-kompozitsionnykh formatsii”, Ukr. matem. zh., 62:4 (2010), 453–463 | MR | Zbl

[6] Vorobev N. N., Algebra klassov konechnykh grupp, Vitebsk, VGU im. P.M. Masherova, 2012, 322 pp.

[7] Elovikova Yu. A., “Algebraichnost reshetok $\Omega$-rassloennykh formatsii”, Vestnik Bryanskogo gos. un-ta: Tochnye i estestv. nauki, 4 (2013), 13–16

[8] Zadorozhnyuk M. V., “Ob elementakh vysoty 3 reshetki $\tau$-znachnykh $\omega$-kompozitsionnykh formatsii”, Vesn. Grodzenskaga dzyarzh. un-ta imya Yanki Kupaly, 2 (2008), 16–21

[9] Kamornikov S. F., Selkin M. V., Podgruppovye funktory i klassy konechnykh grupp, Minsk, Belaruskaya navuka, 2003, 254 pp.

[10] Korpacheva M. A., Sorokina M. M., “Kriticheskie $\omega$-veernye $\tau$-zamknutye formatsii konechnykh grupp”, Diskretnaya matematika, 23:1 (2011), 94–101 | MR | Zbl

[11] Safonov V. G., “Ob algebraichnosti reshetki $\tau$-zamknutykh totalno nasyschennykh formatsii”, Algebra i logika, 45:5 (2006), 620–626 | MR | Zbl

[12] Skiba A. N., “O lokalnykh formatsiyakh dliny 5”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 135–149

[13] Skiba A. N., “Kharakterizatsiya konechnykh razreshimykh grupp zadannoi nilpotentnoi dliny”, Voprosy algebry, 3 (1987), 21–31 | Zbl

[14] Skiba A. N., Algebra formatsii, Minsk, Belaruskaya navuka, 1997, 240 pp. | MR

[15] Skiba A. N., Shemetkov L. A., “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[16] Skiba A. N., Shemetkov L. A., “Kratno $\frak{L}$-kompozitsionnye formatsii konechnykh grupp”, Ukr. matem. zh., 52:6 (2000), 783–797 | MR | Zbl

[17] Shabalina I. P., “Algebraichnost reshetki $\tau$-zamknutykh $n$-kratno $\omega$-lokalnykh formatsii”, Voprosy algebry–18, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 5, no. 14, 2002, 59–67 | Zbl

[18] Shemetkov L. A., “Stupenchatye formatsii grupp”, Matem. sbornik, 94:4 (1974), 628–648 | Zbl

[19] Shemetkov L. A., Formatsii konechnykh grupp, Moskva, Nauka, 1978, 272 pp. | MR

[20] Shemetkov L. A., “O proizvedenii formatsii”, Dokl. AN BSSR, 28:2 (1984), 101–103 | MR | Zbl

[21] Shemetkov L. A., Skiba A. N., Formatsii algebraicheskikh sistem, Moskva, Nauka, 1989, 256 pp. | MR

[22] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin — New-York, 1992, 901 pp. | MR

[23] Gaschutz W., “Zur Theorie der endlichen auflosbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl

[24] Maksakov S. P., “On the lattices of the $\omega$-fibered formations of finite groups”, Tr. IMM UrO RAN, 27:1 (2021), 258–267 | MR