On the universality of product for classes of linear functions of two variables
Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 20-22
Voir la notice de l'article provenant de la source Math-Net.Ru
Earlier, the author introduced the concept of a universal function and proved the existence of universal functions for classes of linear $k$-valued functions of two variables for $k\ge5$. In this paper, we show that the product modulo $k$ is a universal function for the class of linear $k$-valued functions of two variables if and only if $k=6l\pm1$.
Keywords:
linear $k$-valued function, generating of functions, universal function, product of variables.
@article{DM_2022_34_1_a1,
author = {A. A. Voronenko},
title = {On the universality of product for classes of linear functions of two variables},
journal = {Diskretnaya Matematika},
pages = {20--22},
publisher = {mathdoc},
volume = {34},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2022_34_1_a1/}
}
A. A. Voronenko. On the universality of product for classes of linear functions of two variables. Diskretnaya Matematika, Tome 34 (2022) no. 1, pp. 20-22. http://geodesic.mathdoc.fr/item/DM_2022_34_1_a1/