On implementation of Boolean functions by contact circuits of minimal uniform width
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 94-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

For each Boolean function, we find a minimal possible value of the uniform width of a contact circuit implementing this function. We also show that, for almost all $n$-place Boolean functions, this value is equal to $3$.
Keywords: contact circuit, Boolean function, uniform width of a circuit.
@article{DM_2021_33_4_a8,
     author = {K. A. Popkov},
     title = {On implementation of {Boolean} functions by contact circuits of minimal uniform width},
     journal = {Diskretnaya Matematika},
     pages = {94--109},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a8/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - On implementation of Boolean functions by contact circuits of minimal uniform width
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 94
EP  - 109
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_4_a8/
LA  - ru
ID  - DM_2021_33_4_a8
ER  - 
%0 Journal Article
%A K. A. Popkov
%T On implementation of Boolean functions by contact circuits of minimal uniform width
%J Diskretnaya Matematika
%D 2021
%P 94-109
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_4_a8/
%G ru
%F DM_2021_33_4_a8
K. A. Popkov. On implementation of Boolean functions by contact circuits of minimal uniform width. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 94-109. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a8/

[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, Moskva, 1984, 138 pp.

[2] Shannon C. E., “A symbolic analysis of relay and switching circuits”, Trans. AIEE, 57 (1938), 713–723

[3] Shannon C. E., “The synthesis of two-terminal switching circuits”, Bell Syst. Tech. J., 28:1 (1949), 59–98 | DOI

[4] Korshunov A. D., “Computational complexity of Boolean functions”, Russian Math. Surveys, 67:1 (2012), 93–165 | DOI | Zbl

[5] Madatyan Kh. A., “Sintez kontaktnykh skhem ogranichennoi shiriny”, Problemy kibernetiki, 14, Nauka, Moskva, 1965, 301–307

[6] Karpova N. A., “O vychisleniyakh s ogranichennoi pamyatyu”, Matematicheskie voprosy kibernetiki, 2, Nauka, Moskva, 1989, 131–144

[7] Okolnishnikova E. A., “O slozhnosti vetvyaschikhsya programm”, Matematicheskie voprosy kibernetiki, 10, FIZMATLIT, Moskva, 2001, 69–82

[8] Lozhkin S. A., Lektsii po osnovam kibernetiki (uchebnoe posobie dlya studentov), Izd. otdel f-ta VMiK MGU, Moskva, 2004, 251 pp.

[9] Konovodov V. A., “O sinteze skhem ogranichennoi shiriny”, Mater. VIII molodezhnoi nauchnoi shkoly po diskretnoi matematike i ee prilozheniyam (Moskva, 24–29 oktyabrya 2011 g.), Moskva, 2011, 37–41

[10] Kravtsov S. S., “O realizatsii funktsii algebry logiki v odnom klasse skhem iz funktsionalnykh i kommutatsionnykh elementov”, Problemy kibernetiki, 19, Nauka, Moskva, 1967, 285–292

[11] Popkov K. A., “O realizatsii bulevykh funktsii kontaktnymi skhemami ravnomernoi shiriny $3$”, Uchenye zapiski Kazansk. un-ta. Ser. Fiz.-matem. nauki, 162:3 (2020), 350–358

[12] Redkin N. P., Nadezhnost i diagnostika skhem, Izd-vo Mosk. un-ta, Moskva, 1992, 192 pp.

[13] Popkov K. A., “O realizatsii bulevykh funktsii kontaktnymi skhemami konstantnoi ravnomernoi shiriny”, Doklady Rossiiskoi akademii nauk. Matematika, informatika, protsessy upravleniya, 495 (2020), 65–68 | Zbl