On the linear disjunctive decomposition of a $p$-logic function into a product of functions
Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 153-171
Let $p$ be a prime number, $p\ge 3$. We consider the set of decompositions of a $p$-logic function into a product of functions with disjoint subsets of variables obtained by means of linear substitutions of arguments. Each decomposition of this kind is associated with a decomposition of the vector space into a direct sum of subspaces. We present conditions under which such space decomposition is unique up to rearrangement of subspaces. Also, a criterion for such product to be balanced is given.
Keywords:
$p$-logic function, decomposition into a direct product, linear transform.
@article{DM_2021_33_4_a12,
author = {A. V. Cheremushkin},
title = {On the linear disjunctive decomposition of a $p$-logic function into a product of functions},
journal = {Diskretnaya Matematika},
pages = {153--171},
year = {2021},
volume = {33},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2021_33_4_a12/}
}
A. V. Cheremushkin. On the linear disjunctive decomposition of a $p$-logic function into a product of functions. Diskretnaya Matematika, Tome 33 (2021) no. 4, pp. 153-171. http://geodesic.mathdoc.fr/item/DM_2021_33_4_a12/
[1] Cheremushkin A. V., “Odnoznachnost razlozheniya dvoichnoi funktsii v bespovtornoe proizvedenie nelineinykh neprivodimykh somnozhitelei”, Vestnik Mosk. gos. un-ta lesa «Lesnoi vestnik», 4(35) (2004), 86–90
[2] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972, 232 pp.; Marcus M., Minc H., A Survey of Matrix Theory and Matrix Inequalities, Allyn Bacon, Inc., Boston, 1964 | Zbl
[3] Davis P. J., Circulant Matrices., 2nd ed., Chelsea, New York, 1994 | Zbl