Some families of closed classes in~$P_k$ defined by additive formulas
Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 100-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyse closed classes in $k$-valued logics containing all linear functions modulo $k$. The classes are determined by divisors $d$ of a number $k$ and canonical formulas for functions. We construct the lattice of all such classes for $k=p^2$, where $p$ is a prime, and construct fragments of the lattice for other composite $k$.
Keywords: function algebra, $k$-valued logic, lattice of closed classes, linear function.
@article{DM_2021_33_2_a7,
     author = {D. G. Meshchaninov},
     title = {Some families of closed classes in~$P_k$ defined by additive formulas},
     journal = {Diskretnaya Matematika},
     pages = {100--116},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a7/}
}
TY  - JOUR
AU  - D. G. Meshchaninov
TI  - Some families of closed classes in~$P_k$ defined by additive formulas
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 100
EP  - 116
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a7/
LA  - ru
ID  - DM_2021_33_2_a7
ER  - 
%0 Journal Article
%A D. G. Meshchaninov
%T Some families of closed classes in~$P_k$ defined by additive formulas
%J Diskretnaya Matematika
%D 2021
%P 100-116
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_2_a7/
%G ru
%F DM_2021_33_2_a7
D. G. Meshchaninov. Some families of closed classes in~$P_k$ defined by additive formulas. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 100-116. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a7/

[1] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Trudy MIAN SSSR, 51, 1958, 5–142 | Zbl

[2] Cherepov A. N., “Opisanie struktury zamknutykh klassov v $P_k$, soderzhaschikh klass polinomov”, Problemy kibernetiki, 1983, no. 40, 5–18 | MR | Zbl

[3] Cherepov A. N., Nadstruktura klassa sokhraneniya otnoshenii sravneniya v $k$-znachnoi logike po vsem modulyam-delitelyam $k$, Avtoref. diss. kand. fiz.-mat. n., MGU im. M. V. Lomonosova, f-t VMiK, Moskva, 1986

[4] Meschaninov D. G., “Nekotorye usloviya predstavimosti funktsii iz $P_k$ polinomami po modulyu $k$”, Dokl. AN SSSR, 299:1 (1988), 50–53

[5] Meschaninov D. G., “O nekotorykh svoistvakh nadstruktury klassa polinomov v $P_k$”, Matem. zametki, 44:5 (1988), 673–681 | MR

[6] Remizov A. B., “O nadstrukture zamknutogo klassa polinomov po modulyu $k$”, Diskretnaya matematika, 1:1 (1989), 3–15 | MR

[7] Meschaninov D. G., “O vtorykh $p$-raznostyakh funktsii $p^{\alpha }$-znachnoi logiki”, Diskretnaya matematika, 4:4 (1992), 131–139

[8] Gavrilov G. P., “O nadstrukture klassa polinomov v mnogoznachnykh logikakh”, Diskretnaya matematika, 8:3 (1996), 90–97 | Zbl

[9] Gavrilov G. P., “O zamknutykh klassakh mnogoznachnoi logiki, soderzhaschikh klass polinomov”, Diskretnaya matematika, 9:2 (1997), 12–23 | MR | Zbl

[10] Krokhin A. A., Safin K. L., Sukhanov E. V., “O stroenii reshetki zamknutykh klassov polinomov”, Diskretnaya matematika, 9:2 (1997), 24–39 | Zbl

[11] Meschaninov D. G., “O pervykh $d$-raznostyakh funktsii $k$-znachnoi logiki”, Matem. voprosy kibernetiki, 1998, no. 7, 265–280

[12] Meschaninov D. G., “O zamknutykh klassakh $k$-znachnykh funktsii, sokhranyayuschikh pervye $d$-raznosti”, Matem. voprosy kibernetiki, 1999, no. 8, 219–230

[13] Zaets M. V., “O klasse variatsionno-koordinatno-polinomialnykh funktsii nad primarnym koltsom vychetov”, Prikladnaya diskret. matematika, 2014, no. 3(25), 12–2

[14] Zaets M. V., “Klassifikatsiya funktsii nad primarnym koltsom vychetov v svyazi s metodom pokoordinatnoi linearizatsii”, Prikladnaya diskret. matematika. Prilozhenie., 2014, no. 7, 16–19

[15] Meschaninov D. G., “Zamknutye klassy polinomov po modulyu $p^2$”, Diskretnaya matematika, 29:3 (2017), 54–69

[16] Meschaninov D. G., “Ob odnom semeistve zamknutykh klassov v $k$-znachnoi logike”, Vestnik Moskovskogo un-ta. Ser. 15. Vych. matem. i kibernetika, 2019, no. 1, 44–53

[17] Meschaninov D. G., “Semeistva zamknutykh klassov v $P_k$, opredelyaemye additivnymi i polinomialnymi predstavleniyami funktsii”, Materialy XII Mezhdunarodnogo seminara «Diskretnaya matematika i ee prilozheniya» im. akademika O. B. Lupanova (Moskva, MGU, 20–25 iyunya 2016 g.), Izd. mekh.-mat. f-ta MGU, Moskva, 2016, 96–106

[18] Meschaninov D. G., “Klassifikatsiya $k$-znachnykh funktsii na osnove additivnykh formul”, Sintaksis i semantika logicheskikh sistem: materialy 6-i Mezhdunarodnoi shkoly-seminara (Mongoliya, Khankh, 11–16 avgusta 2019 g.; FGBOU VO «IGU»), Izd. IGU, Irkutsk, 2019, 68–72

[19] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, FIZMATLIT, Moskva, 2004, 416 pp.