Completeness criterion with respect to the enumeration closure operator in the three-valued logic
Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 86-99
Voir la notice de l'article provenant de la source Math-Net.Ru
The enumeration closure operator (the $\Pi$-operator) is considered on the set $P_k$ of functions of the $k$-valued logic. It is proved that, for any $k\geqslant 2$, any positively precomplete class in $P_k$ is also $\Pi$-precomplete. It is also established that there are no other $\Pi$-precomplete classes in the three-valued logic.
Keywords:
enumeration closure operator, functions of three-valued logic.
@article{DM_2021_33_2_a6,
author = {S. S. Marchenkov and V. A. Prostov},
title = {Completeness criterion with respect to the enumeration closure operator in the three-valued logic},
journal = {Diskretnaya Matematika},
pages = {86--99},
publisher = {mathdoc},
volume = {33},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/}
}
TY - JOUR AU - S. S. Marchenkov AU - V. A. Prostov TI - Completeness criterion with respect to the enumeration closure operator in the three-valued logic JO - Diskretnaya Matematika PY - 2021 SP - 86 EP - 99 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/ LA - ru ID - DM_2021_33_2_a6 ER -
S. S. Marchenkov; V. A. Prostov. Completeness criterion with respect to the enumeration closure operator in the three-valued logic. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 86-99. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/