Completeness criterion with respect to the enumeration closure operator in the three-valued logic
Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 86-99

Voir la notice de l'article provenant de la source Math-Net.Ru

The enumeration closure operator (the $\Pi$-operator) is considered on the set $P_k$ of functions of the $k$-valued logic. It is proved that, for any $k\geqslant 2$, any positively precomplete class in $P_k$ is also $\Pi$-precomplete. It is also established that there are no other $\Pi$-precomplete classes in the three-valued logic.
Keywords: enumeration closure operator, functions of three-valued logic.
@article{DM_2021_33_2_a6,
     author = {S. S. Marchenkov and V. A. Prostov},
     title = {Completeness criterion with respect to the enumeration closure operator in the three-valued logic},
     journal = {Diskretnaya Matematika},
     pages = {86--99},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/}
}
TY  - JOUR
AU  - S. S. Marchenkov
AU  - V. A. Prostov
TI  - Completeness criterion with respect to the enumeration closure operator in the three-valued logic
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 86
EP  - 99
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/
LA  - ru
ID  - DM_2021_33_2_a6
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%A V. A. Prostov
%T Completeness criterion with respect to the enumeration closure operator in the three-valued logic
%J Diskretnaya Matematika
%D 2021
%P 86-99
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/
%G ru
%F DM_2021_33_2_a6
S. S. Marchenkov; V. A. Prostov. Completeness criterion with respect to the enumeration closure operator in the three-valued logic. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 86-99. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/