Completeness criterion with respect to the enumeration closure operator in the three-valued logic
Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 86-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The enumeration closure operator (the $\Pi$-operator) is considered on the set $P_k$ of functions of the $k$-valued logic. It is proved that, for any $k\geqslant 2$, any positively precomplete class in $P_k$ is also $\Pi$-precomplete. It is also established that there are no other $\Pi$-precomplete classes in the three-valued logic.
Keywords: enumeration closure operator, functions of three-valued logic.
@article{DM_2021_33_2_a6,
     author = {S. S. Marchenkov and V. A. Prostov},
     title = {Completeness criterion with respect to the enumeration closure operator in the three-valued logic},
     journal = {Diskretnaya Matematika},
     pages = {86--99},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/}
}
TY  - JOUR
AU  - S. S. Marchenkov
AU  - V. A. Prostov
TI  - Completeness criterion with respect to the enumeration closure operator in the three-valued logic
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 86
EP  - 99
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/
LA  - ru
ID  - DM_2021_33_2_a6
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%A V. A. Prostov
%T Completeness criterion with respect to the enumeration closure operator in the three-valued logic
%J Diskretnaya Matematika
%D 2021
%P 86-99
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/
%G ru
%F DM_2021_33_2_a6
S. S. Marchenkov; V. A. Prostov. Completeness criterion with respect to the enumeration closure operator in the three-valued logic. Diskretnaya Matematika, Tome 33 (2021) no. 2, pp. 86-99. http://geodesic.mathdoc.fr/item/DM_2021_33_2_a6/

[1] Danil'chenko A. F., “Parametric expressibility of functions of three-valued logic”, 16, 1977, 266–280 | MR | Zbl

[2] Danilchenko A.F., “Parametricheski zamknutye klassy funktsii trekhznachnoi logiki”, Izv. AN MSSR, 2 (1978), 13–20 | Zbl

[3] Kuznetsov A.V., “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, 1979, 5–33, Nauka, M.

[4] Marchenkov S.S., “Osnovnye otnosheniya $S$-klassifikatsii funktsii mnogoznachnoi logiki”, Diskretnaya matematika, 8:1 (1996), 99–128 | DOI | MR | Zbl

[5] Marchenkov S.S., “O vyrazimosti funktsii mnogoznachnoi logiki v nekotorykh logiko-funktsionalnykh yazykakh”, Diskretnaya matematika, 11:4 (1999), 110–126 | DOI | MR | Zbl

[6] Marchenkov S.S., $S$-klassifatsiya funktsii trekhznachnoi logiki, Fizmatlit, M., 2001 | Zbl

[7] Marchenkov S.S., “Diskriminatornye klassy trekhznachnoi logiki”, Matematicheskie voprosy kibernetiki, 2003, no. 12, 15–26, Fizmatlit, M.

[8] Marchenkov S.S., “Kriterii pozitivnoi polnoty v trekhznachnoi logike”, Diskretnyi analiz i issledovanie operatsii, 13:3 (2006), 27–39 | Zbl

[9] Marchenkov S.S., “Zadanie pozitivno zamknutykh klassov posredstvom polugrupp endomorfizmov”, Diskretnaya matematika, 24:4 (2012), 19–26 | DOI | MR | Zbl

[10] Marchenkov S.S., “Ob operatore zamykaniya po perechisleniyu v mnogoznachnoi logike”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2 (2015), 33–39 | Zbl

[11] Marchenkov S.S., Silnye operatory zamykaniya, MAKS Press, M., 2017

[12] Marchenkov S.S., “Rasshireniya operatora pozitivnogo zamykaniya s pomoschyu logicheskikh svyazok”, Diskretn. analiz i issled. oper., 25:4 (2018), 46–58 | DOI | Zbl

[13] Nguen Van Khoa, “O strukture samodvoistvennykh zamknutykh klassov trekhznachnoi logiki $P_3$”, Diskret. matem., 4:4 (1992), 82–95 | MR

[14] Tarasova O.S.,, “Klassy $k$-znachnoi logiki, zamknutye otnositelno rasshirennoi operatsii superpozitsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 6, 54–57 | Zbl

[15] Tarasova O.S., “Klassy funktsii trekhznachnoi logiki, zamknutye otnositelno operatsii superpozitsii i perestanovki”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2004, no. 1, 25–29 | Zbl

[16] Yablonskii S.V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Sbornik statei po matematicheskoi logike i ee prilozheniyam k nekotorym voprosam kibernetiki, Tr. MIAN SSSR, 51, Izd-vo AN SSSR, M., 1958, 5–142

[17] Yanov, Yu. I., Muchnik, A.A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh bazisa”, Doklady Akademii Nauk SSSR, 127:1 (1959), 44–46 | Zbl

[18] Danil'čenko A. F., “On parametrical expressibility of the functions of $k$-valued logic”, Colloq. Math. Soc. J. Bolyai, 28 (1981), 147–159 | MR | Zbl