Properties of proper families of Boolean functions
Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 91-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that triangular families of Boolean functions comprise an exponentially small fraction of proper families of a given order. We prove that if $F$ is a proper family of Boolean functions, then the number of solutions of an equation $F(x) = A$ is even. Finally, we describe a new class of proper families of Boolean functions.
Keywords: proper family of Boolean functions, triangular family.
@article{DM_2021_33_1_a7,
     author = {K. D. Tsaregorodtsev},
     title = {Properties of proper families of {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/}
}
TY  - JOUR
AU  - K. D. Tsaregorodtsev
TI  - Properties of proper families of Boolean functions
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 91
EP  - 102
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/
LA  - ru
ID  - DM_2021_33_1_a7
ER  - 
%0 Journal Article
%A K. D. Tsaregorodtsev
%T Properties of proper families of Boolean functions
%J Diskretnaya Matematika
%D 2021
%P 91-102
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/
%G ru
%F DM_2021_33_1_a7
K. D. Tsaregorodtsev. Properties of proper families of Boolean functions. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/

[1] Keedwell A., Denes J., Latin squares and their applications, 2nd edition, Burlington, North Holland, 2015, 438 pp. | MR

[2] Nosov V. A., “Postroenie klassov latinskikh kvadratov v bulevoi baze dannykh”, Intellektualnye sistemy. Teoriya i prilozheniya, 4:3-4 (1999), 307–320

[3] Nosov V. A., “Postroenie parametricheskogo semeistva latinskikh kvadratov v vektornoi baze dannykh”, Intellektualnye sistemy. Teoriya i prilozheniya, 8:1-4 (2006), 517–529

[4] Nosov V. A., Pankratev A. E., “Latinskie kvadraty nad abelevymi gruppami”, Fundamentalnaya i prikladnaya matematika, 12:3 (2006), 65–71 | MR

[5] Nosov V. A., Pankratev A. E., “O funktsionalnom zadanii latinskikh kvadratov”, Intellektualnye sistemy. Teoriya i prilozheniya, 12:1-4 (2008), 317–332 | MR

[6] Tsaregorodtsev K. D., “O vzaimno odnoznachnom sootvetstvii mezhdu pravilnymi semeistvami bulevykh funktsii i rebernymi orientatsiyami bulevykh kubov”, Prikladnaya diskretnaya matematika, 48 (2020) | Zbl

[7] Kozlov A. A., Nosov V. A., Pankratev A. E.,, “Matritsy i grafy suschestvennoi zavisimosti pravilnykh semeistv funktsii”, Fundamentalnaya i prikladnaya matematika, 14:4 (2008), 137–149

[8] Galatenko A. V., Nosov V. A, Pankratiev A. E., “Latin squares over quasigroups”, Lobachevskii J. Mathematics, 41:2 (2020), 194–203 | DOI | MR | Zbl

[9] Glukhov M. M., “O primeneniyakh kvazigrupp v kriptografii”, Prikladnaya diskretnaya matematika, 2:2 (2008), 28–32 | Zbl

[10] Tuzhilin M. E., “Latinskie kvadraty i ikh primenenie v kriptografii”, Prikladnaya diskretnaya matematika, 2012, no. 3(17), 47–52 | Zbl

[11] Artamonov V. A., “Kvazigruppy i ikh prilozheniya”, Chebyshevskii sbornik, 19:2(66) (2018), 111–122 | MR | Zbl