Properties of proper families of Boolean functions
Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 91-102

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that triangular families of Boolean functions comprise an exponentially small fraction of proper families of a given order. We prove that if $F$ is a proper family of Boolean functions, then the number of solutions of an equation $F(x) = A$ is even. Finally, we describe a new class of proper families of Boolean functions.
Keywords: proper family of Boolean functions, triangular family.
@article{DM_2021_33_1_a7,
     author = {K. D. Tsaregorodtsev},
     title = {Properties of proper families of {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/}
}
TY  - JOUR
AU  - K. D. Tsaregorodtsev
TI  - Properties of proper families of Boolean functions
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 91
EP  - 102
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/
LA  - ru
ID  - DM_2021_33_1_a7
ER  - 
%0 Journal Article
%A K. D. Tsaregorodtsev
%T Properties of proper families of Boolean functions
%J Diskretnaya Matematika
%D 2021
%P 91-102
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/
%G ru
%F DM_2021_33_1_a7
K. D. Tsaregorodtsev. Properties of proper families of Boolean functions. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/