Properties of proper families of Boolean functions
Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 91-102
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that triangular families of Boolean functions comprise an exponentially small fraction of proper families of a given order. We prove that if $F$ is a proper family of Boolean functions, then the number of solutions of an equation $F(x) = A$ is even. Finally, we describe a new class of proper families of Boolean functions.
Keywords:
proper family of Boolean functions, triangular family.
@article{DM_2021_33_1_a7,
author = {K. D. Tsaregorodtsev},
title = {Properties of proper families of {Boolean} functions},
journal = {Diskretnaya Matematika},
pages = {91--102},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/}
}
K. D. Tsaregorodtsev. Properties of proper families of Boolean functions. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 91-102. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a7/