Some cardinality estimates for the set of correlation-immune Boolean functions
Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 12-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates for the cardinality of the set of correlation-immune $n$-ary Boolean functions with fixed weight are obtained.
Keywords: correlation-immune functions, set cardinality, orthogonal array, weight of a Boolean function, even Boolean function.
@article{DM_2021_33_1_a1,
     author = {E. K. Karelina},
     title = {Some cardinality estimates for the set of correlation-immune {Boolean} functions},
     journal = {Diskretnaya Matematika},
     pages = {12--19},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a1/}
}
TY  - JOUR
AU  - E. K. Karelina
TI  - Some cardinality estimates for the set of correlation-immune Boolean functions
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 12
EP  - 19
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_1_a1/
LA  - ru
ID  - DM_2021_33_1_a1
ER  - 
%0 Journal Article
%A E. K. Karelina
%T Some cardinality estimates for the set of correlation-immune Boolean functions
%J Diskretnaya Matematika
%D 2021
%P 12-19
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_1_a1/
%G ru
%F DM_2021_33_1_a1
E. K. Karelina. Some cardinality estimates for the set of correlation-immune Boolean functions. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 12-19. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a1/

[1] Alekseev E.K., “On some algebraic and combinatorial properties of correlation-immune Boolean functions”, Discrete Math. Appl., 20:4 (2010), 421–439 | DOI | MR | Zbl

[2] Alekseev E.K., Karelina E.K., “Classification of correlation-immune and minimal correlation-immune Boolean functions of 4 and 5 variables”, Discrete Math. Appl., 25:4 (2015), 193–202 | DOI | MR | MR | Zbl

[3] Karelina E.K., “On a method of synthesis of correlation-immune Boolean functions”, Discrete Math. Appl., 30:2 (2020), 79–91 | DOI | MR | Zbl

[4] Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yaschenko V.V., Bulevy funktsii v teorii kodirovaniya i kriptologii, Lenand, 2015, 576 pp.

[5] Tarannikov Yu. V., Kombinatornye svoistva diskretnykh struktur i prilozheniya k kriptologii, MTsNMO, 2011, 152 pp.

[6] Siegenthaler T., “Decrypting a class of stream ciphers using ciphertext only”, IEEE Trans. Computers, 34:1 (1985), 81–85 | DOI