Diagnostic tests for discrete functions defined on rings
Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with sources of faults associated with commutative principal ideal rings. Tables of faults of such sources are known to correspond to Cayley multiplication tables in rings, whose elements are replaced by the values of a Boolean function of these elements. For such rings, the concepts of a diagnostic test and the Shannon function for the length of a diagnostic test are introduced in a natural way. It is shown that if $A$ is a principal ideal ring with only one prime ideal $p \neq A$, and if $p^n = 0$ for some $n \in \mathbb {N}$, then, for this ring, the Shannon length function of a diagnostic test has the form $L^{{\rm diagn}}(A,n) = \Theta(n).$ We also define an easily testable functions, i.e., a function with respect to which the order of growth of the length of a diagnostic test with respect to this function is equal to the logarithm of the number of pairwise distinct columns of the table of faults. A link between easily testable functions and column separation of tables of faults for two concrete sources of faults is established.
Keywords: source of faults, shift, test, the Shannon function, principal ideal ring.
@article{DM_2021_33_1_a0,
     author = {G. V. Antyufeev},
     title = {Diagnostic tests for discrete functions defined on rings},
     journal = {Diskretnaya Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2021_33_1_a0/}
}
TY  - JOUR
AU  - G. V. Antyufeev
TI  - Diagnostic tests for discrete functions defined on rings
JO  - Diskretnaya Matematika
PY  - 2021
SP  - 3
EP  - 11
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2021_33_1_a0/
LA  - ru
ID  - DM_2021_33_1_a0
ER  - 
%0 Journal Article
%A G. V. Antyufeev
%T Diagnostic tests for discrete functions defined on rings
%J Diskretnaya Matematika
%D 2021
%P 3-11
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2021_33_1_a0/
%G ru
%F DM_2021_33_1_a0
G. V. Antyufeev. Diagnostic tests for discrete functions defined on rings. Diskretnaya Matematika, Tome 33 (2021) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/DM_2021_33_1_a0/

[1] Atiyah M.F., Macdonald I.G., Introduction to commutative algebra, Addison-Wesley, 1969, ix+128 pp. | MR | Zbl

[2] Belousov A.I., Tkachev S.B., Diskretnaya matematika, Izd-vo MGTU im. N.E. Baumana, Moskva, 2004, 744 pp.

[3] van der Waerden B. L., Algebra, Frederick Ungar Publishing, New York, 1970 | MR | MR

[4] Zhuravlev Yu.I., Flerov Yu.A., Vyalyi M.N., Diskretnyi analiz. Osnovy vysshei algebry, 2-e izd., ispr. i dop., Yurait, Moskva, 2018, 223 pp.

[5] Zariski O., Samuel P., Commutative algebra, v. I, Graduate Texts in Mathematics, D. Van Norstand Comp., Princeton, New Jersey, 1958, xi+329 pp. | MR | Zbl