On the average-case complexity of Boolean functions under binomial distribution on their domains
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 130-134
Cet article a éte moissonné depuis la source Math-Net.Ru
Given a binomial probability distribution on the $n$-dimensional Boolean cube, the complexity of implementation of Boolean functions by straight line programs with conditional stop is considered. The order, as $n\to\infty$, of the average-case complexity of almost all $n$-place Boolean functions is established.
Keywords:
Boolean functions, average-case complexity.
Mots-clés : binomial distribution
Mots-clés : binomial distribution
@article{DM_2020_32_3_a9,
author = {A. V. Chashkin},
title = {On the average-case complexity of {Boolean} functions under binomial distribution on their domains},
journal = {Diskretnaya Matematika},
pages = {130--134},
year = {2020},
volume = {32},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a9/}
}
A. V. Chashkin. On the average-case complexity of Boolean functions under binomial distribution on their domains. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 130-134. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a9/
[1] Chashkin\;A. V., “O srednem vremeni vychisleniya znachenii bulevykh funktsii”, Diskretn. analiz i issled. operatsii. Ser. 1, 4:1 (1997), 60–78 | MR | Zbl
[2] Chashkin\;A. V., Diskretnaya matematika, Akademiya, M., 2012, 352 pp.
[3] Sholomov\;L. A., “O realizatsii nedoopredelennykh bulevykh funktsii skhemami iz funktsionalnykh elementov”, Problemy kibernetiki, 1969, no. 21, 215–226, Nauka, M.