Linear recurrent relations, power series distributions, and generalized allocation scheme
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 98-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider distributions of the power series type determined by the generating functions of sequences satisfying linear recurrence relations with nonnegative coefficients. These functions are represented by power series with positive radius of convergence. An integral limit theorem is proved on the convergence of such distributions to the exponential distribution. For the generalized allocation scheme generated by these linear relations a local normal theorem for the total number of components is proved. As a consequence of more general results of the author, a limit theorem is stated containing sufficient conditions under which the distributions of the number of components having a given volume converge to the Poisson distribution.
Keywords: generalized allocation scheme, power series distribution, linear recurrence relations, characteristic functions, Fibonacci numbers, saddle-point method.
@article{DM_2020_32_3_a7,
     author = {A. N. Timashev},
     title = {Linear recurrent relations, power series distributions, and generalized allocation scheme},
     journal = {Diskretnaya Matematika},
     pages = {98--112},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a7/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Linear recurrent relations, power series distributions, and generalized allocation scheme
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 98
EP  - 112
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a7/
LA  - ru
ID  - DM_2020_32_3_a7
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Linear recurrent relations, power series distributions, and generalized allocation scheme
%J Diskretnaya Matematika
%D 2020
%P 98-112
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a7/
%G ru
%F DM_2020_32_3_a7
A. N. Timashev. Linear recurrent relations, power series distributions, and generalized allocation scheme. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 98-112. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a7/

[1] Noack A., “A class of random variables with discrete distributions”, Ann. Math. Statist., 21 (1950), 127–132 | MR | Zbl

[2] Johnson N.L., Kemp A. W., Kotz S., Univariate Discrete Distributions, Wiley, 565 pp. | MR

[3] Timashev A.N., Raspredeleniya tipa stepennogo ryada i obobschennaya skhema razmescheniya, Izd. dom «Akademiya», M., 2016

[4] Timashev A.N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011

[5] Timashev A.N., Sluchainye komponenty v obobschennoi skheme razmescheniya, Izd. dom «Akademiya», M., 2017

[6] Timashev A.N., “Lokalnye predelnye teoremy dlya odnogo klassa raspredelenii veroyatnostnoi kombinatoriki”, Diskretnaya matematika, 29:2 (2017), 112–133

[7] Timashev A.N., “Limit Poisson law for the distribution of the number of components in generalized allocation scheme”, Discrete Math. Appl., 29:4 (2019), 255–266 | MR | Zbl

[8] Kolchin V.F., “Odin klass predelnykh teorem dlya uslovnykh raspredelenii”, Lit. matem. sb., 8:1 (1968), 53–63 | Zbl

[9] Kolchin V.F., Random mappings, Optimization Software Inc. Publications Division, New York, 1986, 207 pp. | MR | Zbl

[10] Britikov V.E., “Asymptotic number of forests from unrooted trees”, Math. Notes, 43:5 (1988), 387–394 | MR

[11] Kolchin A.V., “On limit theorems for the generalised allocation scheme”, Discrete Math. Appl., 13:6 (2003), 627–636 | MR | Zbl

[12] Pavlov Yu. L., “Limit theorems for the number of trees of a given size in a random forest”, Math. USSR-Sb., 32:3 (1977), 335–345 | MR | Zbl | Zbl

[13] Holst L., “On numbers related to partition of unlike objects and occupancy problems”, European J. Combin., 2 (1981), 231–237 | MR | Zbl