Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2020_32_3_a5, author = {M. P. Savelov}, title = {A family of asymptotically independent statistics in polynomial scheme containing the {Pearson} statistic}, journal = {Diskretnaya Matematika}, pages = {76--84}, publisher = {mathdoc}, volume = {32}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a5/} }
TY - JOUR AU - M. P. Savelov TI - A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic JO - Diskretnaya Matematika PY - 2020 SP - 76 EP - 84 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a5/ LA - ru ID - DM_2020_32_3_a5 ER -
M. P. Savelov. A family of asymptotically independent statistics in polynomial scheme containing the Pearson statistic. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 76-84. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a5/
[1] Borovkov A. A., Mathematical statistics, Gordon and Breach, 1998, 570 pp. | MR | Zbl
[2] Zubkov A. M., Savelov M. P., “Convergence of the sequence of the Pearson statistics values to the normalized square of the Bessel process”, Discrete Math. Appl., 27:6 (2017), 405–411 | DOI | MR | Zbl
[3] Fang K. T., Kotz S. and Ng, K. W., Symmetric Multivariate and Related Distributions, Chapman and Hall, London, 1990, 220 pp. | MR | Zbl
[4] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz. Prodolzhenie kursa, Izd-vo MGU, M., 1987, 358 pp. | MR