Bounds on Shannon functions of lengths of contact closure tests for contact circuits
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 49-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of synthesis of irredundant two-pole contact circuits which implement $n$-place Boolean functions and allow short single fault detection or diagnostic tests of closures of at most $k$ contacts. We prove that the Shannon function of the length of a fault detection test is equal to $n$ for any $n$ and $k$, and that the Shannon function of the length of a diagnostic test is majorized by $n+k(n-2)$ for $n\geqslant 2$.
Keywords: contact circuit, contact closure, Boolean function, fault detection test, diagnostic test, Shannon function.
@article{DM_2020_32_3_a3,
     author = {K. A. Popkov},
     title = {Bounds on {Shannon} functions of lengths of contact closure tests for contact circuits},
     journal = {Diskretnaya Matematika},
     pages = {49--67},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a3/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Bounds on Shannon functions of lengths of contact closure tests for contact circuits
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 49
EP  - 67
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a3/
LA  - ru
ID  - DM_2020_32_3_a3
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Bounds on Shannon functions of lengths of contact closure tests for contact circuits
%J Diskretnaya Matematika
%D 2020
%P 49-67
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a3/
%G ru
%F DM_2020_32_3_a3
K. A. Popkov. Bounds on Shannon functions of lengths of contact closure tests for contact circuits. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 49-67. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a3/