Ergodicity of the probabilistic converter, a serial connection of two automata
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides necessary and sufficient conditions for the the ergodicity of a serial connection of automata under which the output sequence of a substitution Mealy automaton is fed to the input of an output-free substitution automaton. It is shown that the condition of complete indecomposability of the state transition probability matrix of a Mealy automaton provides a sufficient condition for ergodicity of the probabilistic converter as a serial connection of automata. It is also shown that if the partial state transition functions of a Mealy automaton commute, then the condition of ergodicity of a serial connection is equivalent to that of both original probabilistic converters.
Keywords: Mealy automaton, output-free automaton, automaton extension, substitution automaton, serial connection of automata, probabilistic converter, ergodicity of probabilistic converter, indecomposable and aperiodic matrices, completely indecomposable matrices.
@article{DM_2020_32_3_a2,
     author = {I. A. Kruglov},
     title = {Ergodicity of the probabilistic converter, a serial connection of two automata},
     journal = {Diskretnaya Matematika},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a2/}
}
TY  - JOUR
AU  - I. A. Kruglov
TI  - Ergodicity of the probabilistic converter, a serial connection of two automata
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 38
EP  - 48
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a2/
LA  - ru
ID  - DM_2020_32_3_a2
ER  - 
%0 Journal Article
%A I. A. Kruglov
%T Ergodicity of the probabilistic converter, a serial connection of two automata
%J Diskretnaya Matematika
%D 2020
%P 38-48
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a2/
%G ru
%F DM_2020_32_3_a2
I. A. Kruglov. Ergodicity of the probabilistic converter, a serial connection of two automata. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 38-48. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a2/

[1] Sachkov V. N., “Veroyatnostnye preobrazovateli i pravilnye multigrafy. 1”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 227–250 | MR | Zbl

[2] Gorchinskii Yu. N., Kruglov I. A., Kapitonov V. M., “Voprosy teorii raspredelenii na konechnykh gruppakh”, Trudy po diskretnoi matematike, 1, TVP, M., 1997, 85–112 | MR

[3] Sachkov V. N., Kurs kombinatornogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.-Izhevsk, 2013, 336 pp.

[4] Kruglov I. A., “The Kloss convergence principle for products of random variables with values in a compact group and distributions determined by a Markov chain”, Discrete Math. Appl., 18:1 (2008), 41–55 | MR | Zbl

[5] Glukhov M. M., “O chislovykh parametrakh, svyazannykh s zadaniem konechnykh grupp sistemami obrazuyuschikh elementov”, Trudy po diskretnoi matematike, 1 (1997), 43–66 | Zbl

[6] Sarymsakov T. A., Osnovy teorii protsessov Markova, GITTL, M., 1954, 208 pp. | MR