Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local probabilities of lower deviations for branching process $Z_{n} = X_{n, 1} + \dotsb + X_{n, Z_{n-1}}$ in random environment $\eta$. We assume that $\eta$ is a sequence of independent identically distributed random variables and for fixed environment $\boldsymbol\eta$ the distributions of variables $X_{i,j}$ are geometric ones. We suppose that the associated random walk $S_n = \xi_1 + \dotsb + \xi_n$ has positive mean $\mu$ and satisfies left-hand Cramer's condition ${\mathbf E}\exp(h\xi_i) \infty$ if $h^{-}$ for some $h^{-} -1$. Under these assumptions, we find the asymptotic representation of local probabilities ${\mathbf P}\left( Z_n = \lfloor\exp\left(\theta n\right)\rfloor \right)$ for $\theta \in [\theta_1,\theta_2] \subset (\mu^-;\mu)$ for some non-negative $\mu^-$.
Keywords: branching processes, random environments, random walks, Cramer's condition, large deviations, local theorems.
@article{DM_2020_32_3_a1,
     author = {K. Yu. Denisov},
     title = {Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants},
     journal = {Diskretnaya Matematika},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a1/}
}
TY  - JOUR
AU  - K. Yu. Denisov
TI  - Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 24
EP  - 37
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a1/
LA  - ru
ID  - DM_2020_32_3_a1
ER  - 
%0 Journal Article
%A K. Yu. Denisov
%T Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants
%J Diskretnaya Matematika
%D 2020
%P 24-37
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a1/
%G ru
%F DM_2020_32_3_a1
K. Yu. Denisov. Asymptotical local probabilities of lower deviations for branching process in random environment with geometric distributions of descendants. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a1/

[1] Kozlov M. V., “On large deviations of branching processes in a random environment: geometric distribution of descendants”, Discrete Math. Appl., 16:2 (2006), 155–174 | MR | Zbl

[2] Kozlov M. V., “On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny”, Theory Probab. Appl., 54:3 (2010), 424–446 | DOI | MR | Zbl

[3] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Process. Related Fields, 15:3 (2009), 493–524 | MR | Zbl

[4] Buraczewski D., Dyszewski P., “Precise large deviation estimates for branching process in random environment”, 2017, arXiv: 1706.03874 | MR

[5] Shklyaev A.V., “Bolshie ukloneniya vetvyaschegosya protsessa v sluchainoi srede. II”, Diskretnaya matematika, 32:1 (2020), 135–156 | DOI

[6] Bansaye V., Böinghoff C., “Lower large deviations for supercritical branching processes in random environment”, Proc. Steklov Institute of Mathematics, 282:1 (2013), 15–34 | MR | Zbl

[7] Borovkov A.A., Asimptoticheskii analiz sluchainykh bluzhdanii. Bystroubyvayuschie raspredeleniya priraschenii, Fizmatlit, M., 2013, 448 pp.

[8] Petrov V.V., “On the Probabilities of Large Deviations for Sums of Independent Random Variables”, Theory Probab. Appl., 10:2 (1965), 287–298 | DOI | MR | Zbl

[9] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Prob., 12:1 (1975), 39–46 | MR | Zbl