Properties of multitype subcritical branching processes in random environment
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of a $p$-type subcritical branching process in random environment initiated at moment zero by a vector $\mathbf{z}=\left( z_{1},..,z_{p}\right) $ of particles of different types. For $p=1$ the class of processes we consider corresponds to the so-called strongly subcritical case. It is shown that the survival probability of this process up to moment $n$ behaves as $C(\mathbf{z})\lambda ^{n}$ for large $n,$ where the parameters $\lambda\in (0,1) $ and $C(z)\in (0,\infty)$ are explicitly described in terms of the characteristics of the process. We also demonstrate that the distribution of the number of particles of different types at moment $n\rightarrow \infty$ (given its survival up to this moment) does not asymptotically depend on the number and types of particles initiated the process.
Keywords: random environment, multitype branching processes, limit theorems.
@article{DM_2020_32_3_a0,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Properties of multitype subcritical branching processes in random environment},
     journal = {Diskretnaya Matematika},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Properties of multitype subcritical branching processes in random environment
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 3
EP  - 23
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/
LA  - ru
ID  - DM_2020_32_3_a0
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Properties of multitype subcritical branching processes in random environment
%J Diskretnaya Matematika
%D 2020
%P 3-23
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/
%G ru
%F DM_2020_32_3_a0
V. A. Vatutin; E. E. D'yakonova. Properties of multitype subcritical branching processes in random environment. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 3-23. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/

[1] Afanasyev V.I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Proc. Appl., 115:10 (2005), 1658–1676 | MR | Zbl

[2] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | MR | Zbl

[3] Afanasyev V.I., Boeinghoff Ch., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 | MR | Zbl

[4] Bansaye V., “Surviving particles for subcritical branching processes in random environment”, Stochastic Process. Appl., 119:8 (2009), 2436–2464 | MR | Zbl

[5] Buraczewski D., Damek E., Guivarc'h Y., Mentemeier S., “On multidimensional Mandelbrot's cascades”, J.Difference Equat. Appl., 20:11 (2014), 1523–1567 | MR | Zbl

[6] Collamore J.F., Mentemeier S., “Large excursions and conditioned laws for recursive sequences generated by random matrices”, Ann. Probab., 46:4 (2018), 2064–2120 | MR | Zbl

[7] Dyakonova E., “Asymptotic behavior of the probability of non-extinction for a multitype branching process in random environment”, Discrete Math. Appl., 9:1 (1999), 119–136 | MR | Zbl

[8] Dyakonova, E., “On multitype branching process in a random environmen”, J. Math. Sciences, 111:3 (2002), 3537–3541 | MR

[9] Dyakonova E.E., “Critical multitype branching processes in a random environment”, Discrete Math. Appl., 17:6 (2007), 587–606 | MR | Zbl

[10] Dyakonova E., “On subcritical multi-type branching process in random environment”, Proc. Fifth Colloq. Math. and Comput. Sci. Algorithms, Trees, Combinatorics and Probabilities, DMTCS, Nancy, 2008, 401–408 | MR

[11] Dyakonova E.E., “Multitype Galton-Watson branching processes in Markovian random environment”, Theory Probab. Appl., 56:3 (2011), 508–517 | MR

[12] Dyakonova E.E., “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl., 22:5-6 (2012), 639–664 | MR | MR | Zbl

[13] Dyakonova E. E., “Multitype Subcritical Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 80–89 | MR | Zbl

[14] Dyakonova E. E., “Limit theorem for multitype critical branching process evolving in random environment”, Discrete Math. Appl., 25:3 (2015), 137–147 | MR | Zbl

[15] Feller W., An Introduction to Probability Theory and its Applications, v. 2, John Wiley Sons, Inc., New York, London, Sydney, Toronto, 1971 | MR | Zbl

[16] Furstenburg H., Kesten H., “Products of random matrices”, Ann. Math. Statist., 31:2 (1960), 457–469 | MR

[17] Geiger J., Kersting G., Vatutin V. A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincare, Probab. Stat., 39:4 (2003), 593–620 | MR | Zbl

[18] Guivarc'h Y., Liu, Q., “Proprétés asymptotiques des processus de branchement en environnement aléatoire”, C. R. Acad. Sci. Paris, Sér. I Math., 332:4 (2001), 339–344 | MR | Zbl

[19] Hennion H., “Limit theorems for products of random matrices”, Ann. Probab., 25:4 (1997), 1545–1587 | MR | Zbl

[20] Kersting G., Vatutin, V., Discrete Time Branching Processes in Random Environment, Wiley-ISTE, 2017 | MR | Zbl

[21] Le Page E., Peigne M., Pham C., “The survival probability of a critical multi-type branching process in i.i.d. random environment”, Ann. Probab., 46:5 (2018), 2946-2972 | MR | Zbl

[22] Pham T. D. C., “Conditioned limit theorems for products of positive random matrices”, ALEA, Lat. Amer. J. Probab. Math. Stat., 15 (2018), 67–100 | MR | Zbl

[23] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40:3 (1969), 814–827 | MR | Zbl

[24] Vatutin V. A., Dyakonova E. E., “Multitype branching processes in random environment: probability of survival for the critical case”, Theory Probab. Appl., 62:4 (2018) | MR | Zbl

[25] Vatutin V., Wachtel V., “Multi-type subcritical branching processes in a random environment”, Adv. in Appl. Probab., 50A (2018), 281–289 | MR | Zbl

[26] Vatutin V.A., Dyakonova E.E., “Mnogotipnye slabo dokriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Diskretnaya matematika, 31:3 (2019), 26–46 | MR