Properties of multitype subcritical branching processes in random environment
Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 3-23
Voir la notice de l'article provenant de la source Math-Net.Ru
We study properties of a $p$-type subcritical branching process in random environment initiated at moment zero by a vector $\mathbf{z}=\left( z_{1},..,z_{p}\right) $ of particles of different types. For $p=1$ the class of processes we consider corresponds to the so-called strongly subcritical case. It is shown that the survival probability of this process up to moment $n$ behaves as $C(\mathbf{z})\lambda ^{n}$ for large $n,$ where the parameters $\lambda\in (0,1) $ and $C(z)\in (0,\infty)$ are explicitly described in terms of the characteristics of the process. We also demonstrate that the distribution of the number of particles of different types at moment $n\rightarrow \infty$ (given its survival up to this moment) does not asymptotically depend on the number and types of particles initiated the process.
Keywords:
random environment, multitype branching processes, limit theorems.
@article{DM_2020_32_3_a0,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Properties of multitype subcritical branching processes in random environment},
journal = {Diskretnaya Matematika},
pages = {3--23},
publisher = {mathdoc},
volume = {32},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Properties of multitype subcritical branching processes in random environment JO - Diskretnaya Matematika PY - 2020 SP - 3 EP - 23 VL - 32 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/ LA - ru ID - DM_2020_32_3_a0 ER -
V. A. Vatutin; E. E. D'yakonova. Properties of multitype subcritical branching processes in random environment. Diskretnaya Matematika, Tome 32 (2020) no. 3, pp. 3-23. http://geodesic.mathdoc.fr/item/DM_2020_32_3_a0/