On the use of binary operations for the construction of a multiply transitive class of block transformations
Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 85-111
Voir la notice de l'article provenant de la source Math-Net.Ru
We continue to study the set of block transformations $\{\Sigma^F : F\in\mathcal B^*(\Omega)\}$ implemented by a binary network $\Sigma$ endowed with a binary operation $F$ invertible in the second variable. For an arbitrary $k\geqslant2$ we obtain necessary and sufficient conditions for $k$-transitivity of the set of transformations $\{\Sigma^F \colon F\in\mathcal B^*(\Omega)\}$, and propose an efficient method for checking whether these conditions hold. We also introduce two methods for construction of networks $\Sigma$ such that the sets of transformations $\{\Sigma^F\colon F\in\mathcal B^*(\Omega)\}$ are $k$-transitive.
Keywords:
network, block transformation, $k$-transitive class of transformations.
@article{DM_2020_32_2_a6,
author = {I. V. Cherednik},
title = {On the use of binary operations for the construction of a multiply transitive class of block transformations},
journal = {Diskretnaya Matematika},
pages = {85--111},
publisher = {mathdoc},
volume = {32},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_2_a6/}
}
TY - JOUR AU - I. V. Cherednik TI - On the use of binary operations for the construction of a multiply transitive class of block transformations JO - Diskretnaya Matematika PY - 2020 SP - 85 EP - 111 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_2_a6/ LA - ru ID - DM_2020_32_2_a6 ER -
I. V. Cherednik. On the use of binary operations for the construction of a multiply transitive class of block transformations. Diskretnaya Matematika, Tome 32 (2020) no. 2, pp. 85-111. http://geodesic.mathdoc.fr/item/DM_2020_32_2_a6/