Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 110-114
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a probabilistic polynomial algorithm that solves the integer factorization problem using an oracle solving the Diffie–Hellman problem.
Keywords:
integer factorization complexity, complexity upper bounds, Diffie–Hellman problem.
@article{DM_2020_32_1_a7,
author = {M. A. Cherepnev},
title = {Reduction of the integer factorization complexity upper bound to the complexity of the {Diffie--Hellman} problem},
journal = {Diskretnaya Matematika},
pages = {110--114},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/}
}
TY - JOUR AU - M. A. Cherepnev TI - Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem JO - Diskretnaya Matematika PY - 2020 SP - 110 EP - 114 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/ LA - ru ID - DM_2020_32_1_a7 ER -
M. A. Cherepnev. Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 110-114. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/