Reduction of the integer factorization complexity upper bound to the complexity of the Diffie–Hellman problem
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 110-114
We construct a probabilistic polynomial algorithm that solves the integer factorization problem using an oracle solving the Diffie–Hellman problem.
Keywords:
integer factorization complexity, complexity upper bounds, Diffie–Hellman problem.
@article{DM_2020_32_1_a7,
author = {M. A. Cherepnev},
title = {Reduction of the integer factorization complexity upper bound to the complexity of the {Diffie{\textendash}Hellman} problem},
journal = {Diskretnaya Matematika},
pages = {110--114},
year = {2020},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/}
}
TY - JOUR AU - M. A. Cherepnev TI - Reduction of the integer factorization complexity upper bound to the complexity of the Diffie–Hellman problem JO - Diskretnaya Matematika PY - 2020 SP - 110 EP - 114 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/ LA - ru ID - DM_2020_32_1_a7 ER -
M. A. Cherepnev. Reduction of the integer factorization complexity upper bound to the complexity of the Diffie–Hellman problem. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 110-114. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/
[1] Cherepnev M.A., “On the connection between the discrete logarithms and the Diffie-Hellman problem”, Discrete Math. Appl., 6:4 (1996), 341–349 | DOI | DOI | MR | Zbl
[2] Gashkov S.B., Primenko E.A., Cherepnev M.A., Kriptograficheskie metody zaschity informatsii, Uchebnoe posobie, «Akademiya», 2010, 298 pp.
[3] Vasilenko O.N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 325 pp.
[4] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp.; Prachar K., Primzahlverteilung, Springer-Verlag, Berlin Göttingen Heidelberg, 1957 | MR | Zbl