Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 110-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a probabilistic polynomial algorithm that solves the integer factorization problem using an oracle solving the Diffie–Hellman problem.
Keywords: integer factorization complexity, complexity upper bounds, Diffie–Hellman problem.
@article{DM_2020_32_1_a7,
     author = {M. A. Cherepnev},
     title = {Reduction of the integer factorization complexity upper bound to the complexity of the {Diffie--Hellman} problem},
     journal = {Diskretnaya Matematika},
     pages = {110--114},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/}
}
TY  - JOUR
AU  - M. A. Cherepnev
TI  - Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 110
EP  - 114
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/
LA  - ru
ID  - DM_2020_32_1_a7
ER  - 
%0 Journal Article
%A M. A. Cherepnev
%T Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem
%J Diskretnaya Matematika
%D 2020
%P 110-114
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/
%G ru
%F DM_2020_32_1_a7
M. A. Cherepnev. Reduction of the integer factorization complexity upper bound to the complexity of the Diffie--Hellman problem. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 110-114. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a7/

[1] Cherepnev M.A., “On the connection between the discrete logarithms and the Diffie-Hellman problem”, Discrete Math. Appl., 6:4 (1996), 341–349 | DOI | DOI | MR | Zbl

[2] Gashkov S.B., Primenko E.A., Cherepnev M.A., Kriptograficheskie metody zaschity informatsii, Uchebnoe posobie, «Akademiya», 2010, 298 pp.

[3] Vasilenko O.N., Teoretiko-chislovye algoritmy v kriptografii, MTsNMO, M., 2006, 325 pp.

[4] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp.; Prachar K., Primzahlverteilung, Springer-Verlag, Berlin Göttingen Heidelberg, 1957 | MR | Zbl