Universal functions for linear functions depending on two variables
Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider universal function's construction for classes of sums of two arguments modulo 2. We constructed functions with optimal domain cardinality $ O(\log n) $.
Keywords: linear function, universal function, upper bound.
@article{DM_2020_32_1_a0,
     author = {A. A. Voronenko and A. S. Okuneva},
     title = {Universal functions for linear functions depending on two variables},
     journal = {Diskretnaya Matematika},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2020_32_1_a0/}
}
TY  - JOUR
AU  - A. A. Voronenko
AU  - A. S. Okuneva
TI  - Universal functions for linear functions depending on two variables
JO  - Diskretnaya Matematika
PY  - 2020
SP  - 3
EP  - 7
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2020_32_1_a0/
LA  - ru
ID  - DM_2020_32_1_a0
ER  - 
%0 Journal Article
%A A. A. Voronenko
%A A. S. Okuneva
%T Universal functions for linear functions depending on two variables
%J Diskretnaya Matematika
%D 2020
%P 3-7
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2020_32_1_a0/
%G ru
%F DM_2020_32_1_a0
A. A. Voronenko; A. S. Okuneva. Universal functions for linear functions depending on two variables. Diskretnaya Matematika, Tome 32 (2020) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/DM_2020_32_1_a0/