Local limit theorems for generalized scheme of allocation of particles into ordered cells
Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 70-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalized scheme of allocation of $n$ particles into ordered cells (components). Some statements containing sufficient conditions for the weak convergence of the number of components with given cardinality and of the total number of components to the negative binomial distribution as $n\to\infty$ are presented as hypotheses. Examples supporting the validity of these statements in particular cases are considered. For some examples we prove local limit theorems for the total number of components which partially generalize known results on the convergence of this distribution to the normal law.
Keywords: local limit theorems, generalized allocation scheme, particles, ordered cells, saddle-point technique.
@article{DM_2019_31_4_a4,
     author = {A. N. Timashev},
     title = {Local limit theorems for generalized scheme of allocation of particles into ordered cells},
     journal = {Diskretnaya Matematika},
     pages = {70--87},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_4_a4/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Local limit theorems for generalized scheme of allocation of particles into ordered cells
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 70
EP  - 87
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_4_a4/
LA  - ru
ID  - DM_2019_31_4_a4
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Local limit theorems for generalized scheme of allocation of particles into ordered cells
%J Diskretnaya Matematika
%D 2019
%P 70-87
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_4_a4/
%G ru
%F DM_2019_31_4_a4
A. N. Timashev. Local limit theorems for generalized scheme of allocation of particles into ordered cells. Diskretnaya Matematika, Tome 31 (2019) no. 4, pp. 70-87. http://geodesic.mathdoc.fr/item/DM_2019_31_4_a4/

[1] Bender E.A., “Central and local limit theorems applied to asymptotic enumeration”, J. Comb. Theory, 15 (1973), 91–111 | DOI | MR | Zbl

[2] Flajolet P., Soria M., “General combinatorial schemas: Gaussian limit distributions and exponential tails”, Discrete Mathematics, 114 (1993), 159–180 | DOI | MR | Zbl

[3] Flajolet P., Soria M., Analytic Combinatorics, Cambridge University Press, 2009, 824 pp. | MR | Zbl

[4] Flajolet P., Soria M., “Gaussian limiting distributions for the number of components in combinatorial structures”, J. Comb. Theory, Ser. A, 53 (1990), 165–182 | DOI | MR | Zbl

[5] Kolchin V. F., Random Graphs, Cambridge University Press, 1998, 268 pp. | MR

[6] Timashev A.N., Sluchainye komponenty v obobschennoi skheme razmescheniya, Izd. dom «Akademiya», M., 2017

[7] Timashev A.N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011

[8] Ivchenko G. I., Medvedev Yu. I., “Asymptotic representations of finite differences of a power function at an arbitrary point”, Theory Probab. Appl., 10:1 (1965), 139–144 | DOI | MR | Zbl

[9] Kolchin V. F., Random mappings, Optimization Software Inc. Publications Division, New York, 1986, 207 pp. | MR | Zbl

[10] Timashev A.N., Bolshie ukloneniya v veroyatnostnoi kombinatorike, Izd. dom «Akademiya», M., 2011