Multitype weakly subcritical branching processes in random environment
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 26-46
Voir la notice de l'article provenant de la source Math-Net.Ru
A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment $X$ of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions $\mathbf{E}X0$ and $\mathbf{E}Xe^{X}>0$.
Keywords:
multitype branching processes, random environment, survival probability, change of measure.
@article{DM_2019_31_3_a2,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Multitype weakly subcritical branching processes in random environment},
journal = {Diskretnaya Matematika},
pages = {26--46},
publisher = {mathdoc},
volume = {31},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/}
}
V. A. Vatutin; E. E. D'yakonova. Multitype weakly subcritical branching processes in random environment. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 26-46. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/