Multitype weakly subcritical branching processes in random environment
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 26-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment $X$ of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions $\mathbf{E}X0$ and $\mathbf{E}Xe^{X}>0$.
Keywords: multitype branching processes, random environment, survival probability, change of measure.
@article{DM_2019_31_3_a2,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Multitype weakly subcritical branching processes in random environment},
     journal = {Diskretnaya Matematika},
     pages = {26--46},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Multitype weakly subcritical branching processes in random environment
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 26
EP  - 46
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/
LA  - ru
ID  - DM_2019_31_3_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Multitype weakly subcritical branching processes in random environment
%J Diskretnaya Matematika
%D 2019
%P 26-46
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/
%G ru
%F DM_2019_31_3_a2
V. A. Vatutin; E. E. D'yakonova. Multitype weakly subcritical branching processes in random environment. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 26-46. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/

[1] Athreya K.B., Ney P.E., Branching Processes, Springer-Verlag, Berlin-Heidelberg-New York, 1972 | MR | Zbl

[2] Harris T. E., The Theory of Branching Processes, Springer-Verlag, Berlin, 1963 | MR | Zbl

[3] Haccou P., Jagers P., Vatutin V.A., Branching processes variation, growth, and extinction of populations, Cambridge Studies in Adaptive Dynamics, Cambridge Univ. Press, Cambridge, UK, 2005 | MR | Zbl

[4] Jagers P., Branching Processes with Biological Applications, Wiley, London, 1975 | MR | Zbl

[5] Sewastjanow B. A., Verzweigungsprozesse, R.Oldenbourg Verlag, Munich, 1975, xi+326 pp. | MR | Zbl

[6] Athreya K.B., Karlin S., “On branching processes with random environments, II: Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[7] Weissener E.W., “Multitype branching processes in random environments”, J. Appl. Probab., 8:1 (1971), 17–31 | DOI | MR

[8] Kaplan N.,, “Some results about multidimentional branching processes with random environments”, Ann. Probab., 2:3 (1974), 441–455 | DOI | MR | Zbl

[9] Tanny D., “On multitype branching processes in a random environment”, Adv. Appl. Prob., 13:3 (1981), 464–497 | DOI | MR | Zbl

[10] Vatutin V.A., Zubkov A.M., “Branching processes. II”, J. Sov.Math., 67 (1993), 3407–3485 | DOI | MR | Zbl

[11] Kersting G., Vatutin V., Discrete Time Branching Processes in Random Environment, Wiley, New Jersey, 2017, 306 pp. | Zbl

[12] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A.,, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[13] Afanasev V. I., “Funktsionalnaya predelnaya teorema dlya logarifma umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 10:3 (1998), 131–147 | DOI

[14] Afanasev V. I.,, “Predelnye teoremy dlya umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 10:1 (1998), 141–157 | DOI | Zbl

[15] Afanasyev V.I., Boeinghoff C., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincare, Probab. Stat., 50:2 (2014), 602–627 | DOI | MR | Zbl

[16] Geiger J., Kersting G., Vatutin V.A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincare, Probab. Stat., 39:4 (2003), 593–620 | DOI | MR | Zbl

[17] Le Page E., Peigne M., Pham C.,, “The survival probability of a critical multi-type branching process in iid random environment”, Ann. Probab., 46:5 (2018), 2946–2972 | DOI | MR | Zbl

[18] Vatutin V.A., Dyakonova E.E., “Asimptoticheskie svoistva mnogotipnykh kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 22:2 (2010), 22–40 | DOI | Zbl

[19] Dyakonova E., “On subcritical multi-type branching process in random environment”, Proc. Fifth Colloq. Math. Comput. Sci. Algorithms, Trees, Combinatorics and Probabilities, DMTCS, Nancy, 2008, 401–408 | MR

[20] Dyakonova E.E., “Kriticheskie mnogotipnye vetvyaschiesya protsessy v sluchainoi srede”, Diskretnaya matematika, 19:4 (2007), 23–41 | DOI | Zbl

[21] Dyakonova E.E., “Mnogotipnye vetvyaschiesya protsessy Galtona-Vatsona v markovskoi sluchainoi srede”, Teoriya veroyatn. i ee primen., 55:3 (2011), 592–601 | DOI

[22] Dyakonova E.E., “Mnogotipnye vetvyaschiesya protsessy, evolyutsioniruyuschie v markovskoi srede”, Diskretnaya matematika, 24:3 (2012), 130–151 | DOI | MR | Zbl

[23] Kesten H., Spitzer F., “Convergence in distribution of products of random matrices”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 67:4 (1984), 363–386 | DOI | MR | Zbl