Multitype weakly subcritical branching processes in random environment
Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 26-46

Voir la notice de l'article provenant de la source Math-Net.Ru

A multi-type branching process evolving in a random environment generated by a sequence of independent identically distributed random variables is considered. The asymptotics of the survival probability of the process for a long time is found under the assumption that the matrices of the mean values of direct descendants have a common left eigenvector and the increment $X$ of the associated random walk generated by the logarithms of the Perron roots of these matrices satisfies conditions $\mathbf{E}X0$ and $\mathbf{E}Xe^{X}>0$.
Keywords: multitype branching processes, random environment, survival probability, change of measure.
@article{DM_2019_31_3_a2,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Multitype weakly subcritical branching processes in random environment},
     journal = {Diskretnaya Matematika},
     pages = {26--46},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Multitype weakly subcritical branching processes in random environment
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 26
EP  - 46
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/
LA  - ru
ID  - DM_2019_31_3_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Multitype weakly subcritical branching processes in random environment
%J Diskretnaya Matematika
%D 2019
%P 26-46
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/
%G ru
%F DM_2019_31_3_a2
V. A. Vatutin; E. E. D'yakonova. Multitype weakly subcritical branching processes in random environment. Diskretnaya Matematika, Tome 31 (2019) no. 3, pp. 26-46. http://geodesic.mathdoc.fr/item/DM_2019_31_3_a2/