Medial strongly dependent $n$-ary operations
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 152-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an analogue of Toyoda–Belousov theorem on the structure of medial $n$-quasigroups for the case of strongly dependent $n$-ary operations.
Keywords: $n$-ary quasigroups, strongly dependent operations, medial operation.
@article{DM_2019_31_2_a11,
     author = {A. V. Cheremushkin},
     title = {Medial strongly dependent $n$-ary operations},
     journal = {Diskretnaya Matematika},
     pages = {152--157},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a11/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Medial strongly dependent $n$-ary operations
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 152
EP  - 157
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a11/
LA  - ru
ID  - DM_2019_31_2_a11
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Medial strongly dependent $n$-ary operations
%J Diskretnaya Matematika
%D 2019
%P 152-157
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a11/
%G ru
%F DM_2019_31_2_a11
A. V. Cheremushkin. Medial strongly dependent $n$-ary operations. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 152-157. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a11/

[1] Post E. L., “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–-350 | DOI | MR

[2] Gluskin L. M., “Pozitsionnye operativy”, Matem. sb., 68 (110):3 (1965), 444–-472 | Zbl

[3] Hosszu M., “On the explicit form of $n$-group operations”, Publ. Math., 10:1–4 (1963), 88–-92 | MR

[4] Galmak A. M., Vorobev G. N., “O teoreme Posta–Gluskina–Khossu”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 55–59

[5] Cheremushkin A. V., “Analogi teorem Gluskina–Khossu i Malysheva dlya silno zavisimykh $n$-arnykh operatsii”, Diskretnaya matematika, 30:2 (2018), 15–24 | DOI