On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 143-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random polynomial allocations of particles over $N$ cells. Let $ \tau_k, \ k \geq 1, $ be the minimal number of trials when $k$ particles hit the occupied cells. For the case $N\to\infty$ the limit distribution of the random variable $ \tau_k/\sqrt{N} $ is found. An example of application of $\tau_k$ is given.} \keywords{ polynomial allocation, waiting time, occupied cells, distribution density
Keywords: polynomial allocation, waiting time, occupied cells, distribution density.
@article{DM_2019_31_2_a10,
     author = {B. I. Selivanov and V. P. Chistyakov},
     title = {On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme},
     journal = {Diskretnaya Matematika},
     pages = {143--151},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/}
}
TY  - JOUR
AU  - B. I. Selivanov
AU  - V. P. Chistyakov
TI  - On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 143
EP  - 151
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/
LA  - ru
ID  - DM_2019_31_2_a10
ER  - 
%0 Journal Article
%A B. I. Selivanov
%A V. P. Chistyakov
%T On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
%J Diskretnaya Matematika
%D 2019
%P 143-151
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/
%G ru
%F DM_2019_31_2_a10
B. I. Selivanov; V. P. Chistyakov. On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 143-151. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/

[1] Feller W., An introduction to probability theory and its applications, v. 1, 2nd ed., Wiley, New York, 1957, 461 pp. | MR | MR | Zbl

[2] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Random allocations, V. H. Winston Sons, Washington, 1978, 262 pp. | MR | MR | Zbl

[3] Ivchenko G. I., “The waiting time and related statistics in the multinomial scheme: a survey”, Discrete Math. Appl., 3:5 (1993), 451–482 | DOI | MR | MR | Zbl

[4] Selivanov B. I., “On waiting time in the scheme of random allocation of coloured particies”, Discrete Math. Appl., 5:1 (1995), 73–82 | DOI | MR | Zbl

[5] Dwass M., “More birthday surprises”, J. of Combin. Theory, 7 (1969), 258–261 | DOI | MR | Zbl

[6] James B., James K., Qi Y.-C., “Limit theorems for correlated Bernoulli random variables”, Statist. Probab. Letters, 78:15 (2008), 2339–2345 | DOI | MR | Zbl

[7] Dwight H. B., Tables of Integrals and Other Mathematical Data, 3rd Ed., The Macmillan Co: New York and London, 1957, 288 pp. | MR | Zbl