On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 143-151

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider random polynomial allocations of particles over $N$ cells. Let $ \tau_k, \ k \geq 1, $ be the minimal number of trials when $k$ particles hit the occupied cells. For the case $N\to\infty$ the limit distribution of the random variable $ \tau_k/\sqrt{N} $ is found. An example of application of $\tau_k$ is given.} \keywords{ polynomial allocation, waiting time, occupied cells, distribution density
Keywords: polynomial allocation, waiting time, occupied cells, distribution density.
@article{DM_2019_31_2_a10,
     author = {B. I. Selivanov and V. P. Chistyakov},
     title = {On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme},
     journal = {Diskretnaya Matematika},
     pages = {143--151},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/}
}
TY  - JOUR
AU  - B. I. Selivanov
AU  - V. P. Chistyakov
TI  - On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
JO  - Diskretnaya Matematika
PY  - 2019
SP  - 143
EP  - 151
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/
LA  - ru
ID  - DM_2019_31_2_a10
ER  - 
%0 Journal Article
%A B. I. Selivanov
%A V. P. Chistyakov
%T On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
%J Diskretnaya Matematika
%D 2019
%P 143-151
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/
%G ru
%F DM_2019_31_2_a10
B. I. Selivanov; V. P. Chistyakov. On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 143-151. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/