On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme
Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 143-151
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider random polynomial allocations of particles over $N$ cells. Let $ \tau_k, \ k \geq 1, $ be the minimal number of trials when $k$ particles hit the occupied cells. For the case $N\to\infty$ the limit distribution of the random variable $ \tau_k/\sqrt{N} $ is found. An example of application of $\tau_k$ is given.} \keywords{ polynomial allocation, waiting time, occupied cells, distribution density
Keywords:
polynomial allocation, waiting time, occupied cells, distribution density.
@article{DM_2019_31_2_a10,
author = {B. I. Selivanov and V. P. Chistyakov},
title = {On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme},
journal = {Diskretnaya Matematika},
pages = {143--151},
publisher = {mathdoc},
volume = {31},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/}
}
TY - JOUR AU - B. I. Selivanov AU - V. P. Chistyakov TI - On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme JO - Diskretnaya Matematika PY - 2019 SP - 143 EP - 151 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/ LA - ru ID - DM_2019_31_2_a10 ER -
%0 Journal Article %A B. I. Selivanov %A V. P. Chistyakov %T On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme %J Diskretnaya Matematika %D 2019 %P 143-151 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/ %G ru %F DM_2019_31_2_a10
B. I. Selivanov; V. P. Chistyakov. On the waiting times to repeated hits of cells by particles for the polynomial allocation scheme. Diskretnaya Matematika, Tome 31 (2019) no. 2, pp. 143-151. http://geodesic.mathdoc.fr/item/DM_2019_31_2_a10/