The number of sumsets in Abelian group
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 96-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic upper and lower bounds for the numbers of distinct subsets $A+B$ in Abelian group of order $n$ are derived, where $|A|,|B|\geq n(\log_{}n)^{-1/8}.$
Keywords: set, characteristic function, group, progression, coset.
@article{DM_2018_30_4_a8,
     author = {A. A. Sapozhenko and V. G. Sargsyan},
     title = {The number of sumsets in {Abelian} group},
     journal = {Diskretnaya Matematika},
     pages = {96--105},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a8/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
AU  - V. G. Sargsyan
TI  - The number of sumsets in Abelian group
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 96
EP  - 105
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a8/
LA  - ru
ID  - DM_2018_30_4_a8
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%A V. G. Sargsyan
%T The number of sumsets in Abelian group
%J Diskretnaya Matematika
%D 2018
%P 96-105
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a8/
%G ru
%F DM_2018_30_4_a8
A. A. Sapozhenko; V. G. Sargsyan. The number of sumsets in Abelian group. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 96-105. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a8/

[1] Green B., Ruzsa I., “Counting sumsets and sum-free sets modulo a prime”, Studia Sci. Math. Hungarica., 41 (2004), 285–293 | MR | Zbl

[2] Sargsyan V. G., “The number of differences in groups of prime order”, Discrete Math. Appl., 23:2 (2013), 195–201 | DOI | DOI | MR | Zbl

[3] Sargsyan V. G., “Counting sumsets and differences in an abelian group”, J. Applied and Industrial Mathematics, 9:2, 275–282 | DOI | MR | Zbl

[4] Alon N., Granville A., Ubis A., “The number of sumsets in a finite field”, Bulletin of the London mathematical society, 42:5 (2010), 784–794 | DOI | MR | Zbl

[5] Green B., Ruzsa I., “Sum-free sets in abelian groups”, Israel J. Math., 147 (2005), 157–188 | DOI | MR | Zbl