Centrally essential rings which are not necessarily unital or associative
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 42-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Centrally essential rings were defined earlier for associative unital rings; in this paper, we define them for rings which are not necessarily associative or unital. In this case, it is proved that centrally essential semiprime rings are commutative. It is proved that all idempotents of a centrally essential alternative ring are central. Several examples of non-commutative centrally essential rings are provided, some properties of centrally essential rings are described.
Keywords: centrally essential ring, semiprime ring, idempotent, non-unital ring, alternative ring.
@article{DM_2018_30_4_a3,
     author = {V. T. Markov and A. A. Tuganbaev},
     title = {Centrally essential rings which are not necessarily unital or associative},
     journal = {Diskretnaya Matematika},
     pages = {42--47},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a3/}
}
TY  - JOUR
AU  - V. T. Markov
AU  - A. A. Tuganbaev
TI  - Centrally essential rings which are not necessarily unital or associative
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 42
EP  - 47
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a3/
LA  - ru
ID  - DM_2018_30_4_a3
ER  - 
%0 Journal Article
%A V. T. Markov
%A A. A. Tuganbaev
%T Centrally essential rings which are not necessarily unital or associative
%J Diskretnaya Matematika
%D 2018
%P 42-47
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a3/
%G ru
%F DM_2018_30_4_a3
V. T. Markov; A. A. Tuganbaev. Centrally essential rings which are not necessarily unital or associative. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 42-47. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a3/

[1] Lam T.Y., A First Course in Noncommutative Rings, Springer, 2001 | MR | Zbl

[2] Markov V.T., Tuganbaev A.A., “Centrally essential rings”, Discrete Math. Appl. | DOI | MR

[3] Tuganbaev A.A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009, 472 pp.

[4] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings that are nearly associative, Academic Press, New York-London, 1982, xi+371 pp. | MR | MR | Zbl