Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_4_a10, author = {D. S. Taletskii and D. S. Malyshev}, title = {Trees without twin-leaves with smallest number of maximal independent sets}, journal = {Diskretnaya Matematika}, pages = {115--133}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/} }
TY - JOUR AU - D. S. Taletskii AU - D. S. Malyshev TI - Trees without twin-leaves with smallest number of maximal independent sets JO - Diskretnaya Matematika PY - 2018 SP - 115 EP - 133 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/ LA - ru ID - DM_2018_30_4_a10 ER -
D. S. Taletskii; D. S. Malyshev. Trees without twin-leaves with smallest number of maximal independent sets. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 115-133. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/
[1] Dainyak A.B., Sapozhenko A.A., “Independent sets in graphs”, Discrete Math. Appl., 26:6 (2016), 323–346 | DOI | DOI | MR | Zbl
[2] Frendrup A., Pedersen A., Sapozhenko A., Vestergaard P., “Merrifield–Simmons index and minimum number of independent sets in short trees”, Ars Combinatoria, 111 (2013), 85–95 | MR | Zbl
[3] Griggs J., Grinstead C., Guichard D., “The number of maximal independent sets in a connected graph”, Discrete Mathematics, 68:2–3 (1988), 211–220 | DOI | MR | Zbl
[4] Hujter M., Tuza Z., “The number of maximal independent sets in triangle-free graphs”, SIAM J. Discr. Math., 6:2 (1993), 284–288 | DOI | MR | Zbl
[5] Jou M., Chang G., “Maximal independent sets in graphs with at most one cycle”, Discr. Appl. Math., 79:1–3 (1997), 67–73 | DOI | MR | Zbl
[6] Liu J., “Maximal independent sets in bipartite graphs”, J. Graph Theory, 17:1 (1993), 495–507 | DOI | MR | Zbl
[7] Moon J., Moser L., “On cliques in graphs”, Israel J. Math., 3:1 (1965), 23–28 | DOI | MR | Zbl
[8] Wilf H., “The number of maximal independent sets in a tree”, SIAM J. Algebr. Discr. Meth., 7:1 (1986), 125–130 | DOI | MR | Zbl