Trees without twin-leaves with smallest number of maximal independent sets
Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 115-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any $n$, in the set of $n$-vertex trees such that any two leaves have no common adjacent vertex, we describe the trees with the smallest number of maximal independent sets.
Keywords: extremal combinatorics, tree, maximal independent set.
@article{DM_2018_30_4_a10,
     author = {D. S. Taletskii and D. S. Malyshev},
     title = {Trees without twin-leaves with smallest number of maximal independent sets},
     journal = {Diskretnaya Matematika},
     pages = {115--133},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/}
}
TY  - JOUR
AU  - D. S. Taletskii
AU  - D. S. Malyshev
TI  - Trees without twin-leaves with smallest number of maximal independent sets
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 115
EP  - 133
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/
LA  - ru
ID  - DM_2018_30_4_a10
ER  - 
%0 Journal Article
%A D. S. Taletskii
%A D. S. Malyshev
%T Trees without twin-leaves with smallest number of maximal independent sets
%J Diskretnaya Matematika
%D 2018
%P 115-133
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/
%G ru
%F DM_2018_30_4_a10
D. S. Taletskii; D. S. Malyshev. Trees without twin-leaves with smallest number of maximal independent sets. Diskretnaya Matematika, Tome 30 (2018) no. 4, pp. 115-133. http://geodesic.mathdoc.fr/item/DM_2018_30_4_a10/

[1] Dainyak A.B., Sapozhenko A.A., “Independent sets in graphs”, Discrete Math. Appl., 26:6 (2016), 323–346 | DOI | DOI | MR | Zbl

[2] Frendrup A., Pedersen A., Sapozhenko A., Vestergaard P., “Merrifield–Simmons index and minimum number of independent sets in short trees”, Ars Combinatoria, 111 (2013), 85–95 | MR | Zbl

[3] Griggs J., Grinstead C., Guichard D., “The number of maximal independent sets in a connected graph”, Discrete Mathematics, 68:2–3 (1988), 211–220 | DOI | MR | Zbl

[4] Hujter M., Tuza Z., “The number of maximal independent sets in triangle-free graphs”, SIAM J. Discr. Math., 6:2 (1993), 284–288 | DOI | MR | Zbl

[5] Jou M., Chang G., “Maximal independent sets in graphs with at most one cycle”, Discr. Appl. Math., 79:1–3 (1997), 67–73 | DOI | MR | Zbl

[6] Liu J., “Maximal independent sets in bipartite graphs”, J. Graph Theory, 17:1 (1993), 495–507 | DOI | MR | Zbl

[7] Moon J., Moser L., “On cliques in graphs”, Israel J. Math., 3:1 (1965), 23–28 | DOI | MR | Zbl

[8] Wilf H., “The number of maximal independent sets in a tree”, SIAM J. Algebr. Discr. Meth., 7:1 (1986), 125–130 | DOI | MR | Zbl