Short single tests for circuits with arbitrary stuck-at faults at outputs of gates
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 99-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following results are proved: 1) any nonconstant Boolean function may be implemented by an irredundant circuit of gates in the basis $\{x\,$ $\overline x,x\oplus y\oplus z\}$ admitting a single fault detection test of length at most 2 with respect to arbitrary stuck-at faults at outputs of gates, 2) there exists a six-place Boolean function $\psi$ such that any nonconstant Boolean function may be implemented by an irredundant circuit of gates in the basis $\{\psi\}$ admitting a single diagnostic test of length at most 3 with respect to arbitrary stuck-at faults at outputs of gates.
Keywords: circuit of gates, stuck-at fault, single fault detection test, single diagnostic test.
@article{DM_2018_30_3_a8,
     author = {K. A. Popkov},
     title = {Short single tests for circuits with arbitrary stuck-at faults at outputs of gates},
     journal = {Diskretnaya Matematika},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a8/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short single tests for circuits with arbitrary stuck-at faults at outputs of gates
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 99
EP  - 116
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a8/
LA  - ru
ID  - DM_2018_30_3_a8
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short single tests for circuits with arbitrary stuck-at faults at outputs of gates
%J Diskretnaya Matematika
%D 2018
%P 99-116
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_3_a8/
%G ru
%F DM_2018_30_3_a8
K. A. Popkov. Short single tests for circuits with arbitrary stuck-at faults at outputs of gates. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 99-116. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a8/

[1] Chegis I. A., Yablonskii S. V., “Logicheskie sposoby kontrolya raboty elektricheskikh skhem”, Trudy MIAN, 51, 1958, 270–360 | MR | Zbl

[2] Yablonskii S. V., “Nadëzhnost i kontrol upravlyayuschikh sistem”, Mater. Vsesoyuzn. sem. po diskr. matem. i eë pril., Izd-vo MGU, Moskva, 1986, 7–12

[3] Yablonskii S. V., “Nekotorye voprosy nadëzhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, 1988, no. 1, 5–25, Nauka, Moskva

[4] Redkin N. P., Nadëzhnost i diagnostika skhem, Izd-vo MGU, Moskva, 1992, 192 pp.

[5] Reddy, S. M., “Easily testable realizations for logic functions”, IEEE Trans. Comput., C-21:11 (1972), 1183–1188 | DOI | MR

[6] Kolyada S. S., “Edinichnye proveryayuschie testy dlya skhem iz funktsionalnykh elementov”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 2013, no. 4, 32–34 | Zbl

[7] Kolyada S. S., Verkhnie otsenki dliny proveryayuschikh testov dlya skhem iz funktsionalnykh elementov, Diss. na soisk. uch. st. k.f.-m.n., Moskva, 2013, 77 pp.

[8] Romanov D. S., “Metod sinteza legkotestiruemykh skhem, dopuskayuschikh edinichnye proveryayuschie testy konstantnoi dliny”, Diskretnaya matematika, 26:2 (2014), 100–130 | DOI | MR | Zbl

[9] Romanov D. S., Romanova E. Yu., “Metod sinteza neizbytochnykh skhem, dopuskayuschikh korotkie edinichnye diagnosticheskie testy pri konstantnykh neispravnostyakh na vykhodakh elementov”, Izv. VUZov. Povolzhskii region. Fiz.-matem. nauki, 2016, no. 2, 87–102

[10] Popkov K. A., “Nizhnie otsenki dlin edinichnykh testov dlya skhem iz funktsionalnykh elementov”, Diskretnaya matematika, 29:2 (2017), 53–69 | DOI | MR

[11] Redkin N. P., “O polnykh proveryayuschikh testakh dlya skhem iz funktsionalnykh elementov”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1986, no. 1, 72–74 | MR

[12] Redkin N. P., “O polnykh proveryayuschikh testakh dlya skhem iz funktsionalnykh elementov”, Matematicheskie voprosy kibernetiki, no. 2, Nauka, Moskva, 1989, 198–222 | MR

[13] Romanov D. S., “O sinteze skhem, dopuskayuschikh polnye proveryayuschie testy konstantnoi dliny otnositelno proizvolnykh konstantnykh neispravnostei na vykhodakh elementov”, Diskretnaya matematika, 25:2 (2013), 104–120 | DOI | Zbl

[14] Popkov K. A., “Polnye proveryayuschie testy dliny dva dlya skhem pri proizvolnykh konstantnykh neispravnostyakh elementov”, Prepr. IPM im. M. V. Keldysha, 2017, no. 104, 16 | Zbl

[15] Popkov K. A., “Nizhnie otsenki dlin polnykh diagnosticheskikh testov dlya skhem i vkhodov skhem”, Prikl. diskr. matem., 2016, no. 4(34), 65–73

[16] Redkin N. P., “O skhemakh, dopuskayuschikh korotkie testy”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1988, no. 2, 17–21 | MR | Zbl

[17] Redkin N. P., “O edinichnykh diagnosticheskikh testakh dlya odnotipnykh konstantnykh neispravnostei na vykhodakh funktsionalnykh elementov”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1992, no. 5, 43–46

[18] Borodina Yu. V., “O sinteze legkotestiruemykh skhem v sluchae odnotipnykh konstantnykh neispravnostei na vykhodakh elementov”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibern., 2008, no. 1, 40–44 | MR | Zbl

[19] Popkov K. A., “O tochnom znachenii dliny minimalnogo edinichnogo diagnosticheskogo testa dlya odnogo klassa skhem”, Diskr. analiz i issled. operatsii, 24:3 (2017), 80–103 | Zbl

[20] Popkov K. A., “Edinichnye proveryayuschie testy dlya skhem iz funktsionalnykh elementov v bazise «kon'yunktsiya-otritsanie»”, Prikl. diskr. matem., 2017, no. 38, 66–88 | DOI

[21] Borodina Yu. V., “Nizhnyaya otsenka dliny polnogo proveryayuschego testa v bazise $\{x\mid y\}$”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 2015, no. 4, 49–51 | MR | Zbl

[22] Borodina Yu. V., “O skhemakh, dopuskayuschikh edinichnye testy dliny 1 pri konstantnykh neispravnostyakh na vykhodakh elementov”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 2008, no. 5, 49–52 | MR | Zbl

[23] Borodina Yu. V., Borodin P. A., “Sintez legkotestiruemykh skhem v bazise Zhegalkina pri konstantnykh neispravnostyakh tipa 0 na vykhodakh elementov”, Diskretnaya matematika, 22:3 (2010), 127–133 | DOI | MR | Zbl

[24] Popkov K. A., “O edinichnykh diagnosticheskikh testakh dlya skhem iz funktsionalnykh elementov v bazise Zhegalkina”, Izv. VUZov. Povolzhskii region. Fiz.-matem. nauki, 2016, no. 3, 3–18

[25] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986, 384 pp. | MR