Short single tests for circuits with arbitrary stuck-at faults at outputs of gates
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 99-116
Voir la notice de l'article provenant de la source Math-Net.Ru
The following results are proved: 1) any nonconstant Boolean function may be implemented by an irredundant circuit of gates in the basis $\{x\,$ $\overline x,x\oplus y\oplus z\}$ admitting a single fault detection test of length at most 2 with respect to arbitrary stuck-at faults at outputs of gates, 2) there exists a six-place Boolean function $\psi$ such that any nonconstant Boolean function may be implemented by an irredundant circuit of gates in the basis $\{\psi\}$ admitting a single diagnostic test of length at most 3 with respect to arbitrary stuck-at faults at outputs of gates.
Keywords:
circuit of gates, stuck-at fault, single fault detection test, single diagnostic test.
@article{DM_2018_30_3_a8,
author = {K. A. Popkov},
title = {Short single tests for circuits with arbitrary stuck-at faults at outputs of gates},
journal = {Diskretnaya Matematika},
pages = {99--116},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a8/}
}
K. A. Popkov. Short single tests for circuits with arbitrary stuck-at faults at outputs of gates. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 99-116. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a8/