Durfee squares in compositions
Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 3-13
Voir la notice de l'article provenant de la source Math-Net.Ru
We study compositions (ordered partitions) of $n$. More particularly, our focus is on the bargraph representation of compositions which include or avoid squares of size $s \times s$. We also extend the definition of a Durfee square (studied in integer partitions) to be the largest square which lies on the base of the bargraph representation of a composition (i.e., is ‘grounded’). Via generating functions and asymptotic analysis, we consider compositions of $n$ whose Durfee squares are of size less than $s \times s$. This is followed by a section on the total and average number of grounded $s \times s$ squares. We then count the number of Durfee squares in compositions of $n$.
Keywords:
composition, generating function, Durfee square.
@article{DM_2018_30_3_a0,
author = {M. Archibald and A. Blecher and Ch. Brennan and A. Knopfmacher and T. Mansour},
title = {Durfee squares in compositions},
journal = {Diskretnaya Matematika},
pages = {3--13},
publisher = {mathdoc},
volume = {30},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_3_a0/}
}
TY - JOUR AU - M. Archibald AU - A. Blecher AU - Ch. Brennan AU - A. Knopfmacher AU - T. Mansour TI - Durfee squares in compositions JO - Diskretnaya Matematika PY - 2018 SP - 3 EP - 13 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_3_a0/ LA - ru ID - DM_2018_30_3_a0 ER -
M. Archibald; A. Blecher; Ch. Brennan; A. Knopfmacher; T. Mansour. Durfee squares in compositions. Diskretnaya Matematika, Tome 30 (2018) no. 3, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2018_30_3_a0/