Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 138-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains an extension of Malyshev theorem for $n$-ary quasigroups with a right or left weak invertibility property to the case of strongly dependent $n$-ary operations. As a corollary a new proof of Gluskin–Hosszú theorem for strongly dependent $n$-ary semigroups is obtained.
Keywords: $n$-ary groups, strongly dependent operations, weak invertibility.
@article{DM_2018_30_2_a9,
     author = {A. V. Cheremushkin},
     title = {Analogues of {Gluskin--Hossz\'{u}} and {Malyshev} theorems for strongly dependent $n$-ary operations},
     journal = {Diskretnaya Matematika},
     pages = {138--147},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 138
EP  - 147
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/
LA  - ru
ID  - DM_2018_30_2_a9
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations
%J Diskretnaya Matematika
%D 2018
%P 138-147
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/
%G ru
%F DM_2018_30_2_a9
A. V. Cheremushkin. Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 138-147. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/

[1] Sokhatskii F. N., “Ob assotsiativnosti mnogomestnykh operatsii”, Diskretnaya matematika, 4:1 (1992), 66–84 | MR

[2] Galmak A. M., Vorobev G. N., “O teoreme Posta–Gluskina–Khossu”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1(14), 55–59

[3] Malyshev F. M., “O teoreme Posta–Gluskina–Khossu dlya konechnykh kvazigrupp i samoinvariantnye semeistva podstanovok”, Matem. sb., 207:2 (2016), 81—92 | DOI | Zbl

[4] Malyshev F. M., “Teorema Posta–Gluskina–Khossu dlya $n$-kvazigrupp”, Mater. XIV Mezhdunar. konf. «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», posvyasch. 70-letiyu so dnya rozhdeniya G. I. Arkhipova i S. M. Voronina, Issled. po algebre, teorii chisel, funkts. analizu i smezhnym voprosam: mezhvuz. sb. nauch. tr., 8, Izd-vo Sarat. un-ta, Saratov, 2016, 59–62

[5] Sokhatskii F. N., “Obobschenie dvukh teorem Belousova dlya silno zavisimykh funktsii $k$-znachnoi logiki”, Matematicheskie issledovaniya, 1985, no. 83, 105–115, Shtiintsa, Kishinev | MR

[6] Belousov V. D., $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 277 pp. | MR

[7] Cheremushkin A. V., “Bespovtornaya dekompoziiya silno zavisimykh funktsii”, Diskretnaya matematika, 16:3 (2004), 3–42 | DOI | MR | Zbl