Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 138-147
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper contains an extension of Malyshev theorem for $n$-ary quasigroups with a right or left weak invertibility property to the case of strongly dependent $n$-ary operations. As a corollary a new proof of Gluskin–Hosszú theorem for strongly dependent $n$-ary semigroups is obtained.
Keywords:
$n$-ary groups, strongly dependent operations, weak invertibility.
@article{DM_2018_30_2_a9,
author = {A. V. Cheremushkin},
title = {Analogues of {Gluskin--Hossz\'{u}} and {Malyshev} theorems for strongly dependent $n$-ary operations},
journal = {Diskretnaya Matematika},
pages = {138--147},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/}
}
TY - JOUR
AU - A. V. Cheremushkin
TI - Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations
JO - Diskretnaya Matematika
PY - 2018
SP - 138
EP - 147
VL - 30
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/
LA - ru
ID - DM_2018_30_2_a9
ER -
A. V. Cheremushkin. Analogues of Gluskin--Hossz\'{u} and Malyshev theorems for strongly dependent $n$-ary operations. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 138-147. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a9/