Families of quasigroup operations satisfying the generalized distributive law
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 99-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The previous paper was concerned with systems of equations over a certain family $\mathcal S$ of quasigroups. In that work a method of elimination of an outermost variable from the system of equations was suggested and it was shown that further elimination of variables requires that the family $\mathcal S$ of quasigroups satisfy the generalized distributive law (GDL). In this paper we describe families $\mathcal S$ that satisfy GDL. The results are applied to construct classes of easily solvable systems of equations.
Keywords: systems of equations, Gaussian algorithm, quasigroups, generalized distributive law.
@article{DM_2018_30_2_a7,
     author = {S. V. Polin},
     title = {Families of quasigroup operations satisfying the generalized distributive law},
     journal = {Diskretnaya Matematika},
     pages = {99--119},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a7/}
}
TY  - JOUR
AU  - S. V. Polin
TI  - Families of quasigroup operations satisfying the generalized distributive law
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 99
EP  - 119
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a7/
LA  - ru
ID  - DM_2018_30_2_a7
ER  - 
%0 Journal Article
%A S. V. Polin
%T Families of quasigroup operations satisfying the generalized distributive law
%J Diskretnaya Matematika
%D 2018
%P 99-119
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a7/
%G ru
%F DM_2018_30_2_a7
S. V. Polin. Families of quasigroup operations satisfying the generalized distributive law. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 99-119. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a7/

[1] Belousov V.D., Osnovy teorii kvazigrupp i lup, Nauka, Moskva, 1967 | MR

[2] Belousov V. D., “Systems of quasigroups with generalized identities”, Russian Math. Surveys, 20:1 (1965), 75–143 | DOI | MR | Zbl

[3] Glukhov M.M., “O metodakh postroeniya sistem ortogonalnykh kvazigrupp s ispolzovaniem grupp”, Matematicheskie voprosy kriptografii, 2:4 (2011), 5–24 | DOI

[4] Polin S.V., Elementarnye preobrazovaniya sistem uravnenii nad kvazigruppami i obobschennye tozhdestva., v pechati.

[5] Suprunenko D.A., Gruppy matrits, Nauka, Moskva, 1972 | MR

[6] Hosszú M., “Homogeneous groupoids”, Ann. Univ. Sci. Budapest. Eötvös // Sect. Math., 1960–1961, no. 3–4, 95–98 | MR