Centrally essential rings
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A centrally essential ring is a ring which is an essential extension of its center (we consider the ring as a module over its center). We give several examples of noncommutative centrally essential rings and describe some properties of centrally essential rings.
Keywords: centrally essential ring, center of the ring, semiprime ring, semiperfect ring.
@article{DM_2018_30_2_a4,
     author = {V. T. Markov and A. A. Tuganbaev},
     title = {Centrally essential rings},
     journal = {Diskretnaya Matematika},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a4/}
}
TY  - JOUR
AU  - V. T. Markov
AU  - A. A. Tuganbaev
TI  - Centrally essential rings
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 55
EP  - 61
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a4/
LA  - ru
ID  - DM_2018_30_2_a4
ER  - 
%0 Journal Article
%A V. T. Markov
%A A. A. Tuganbaev
%T Centrally essential rings
%J Diskretnaya Matematika
%D 2018
%P 55-61
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a4/
%G ru
%F DM_2018_30_2_a4
V. T. Markov; A. A. Tuganbaev. Centrally essential rings. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 55-61. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a4/

[1] Bourbaki N., Algébre, v. Livre II, Hermann, Paris | MR

[2] Lambek J., Lectures on Rings and Modules, Ginn (Blaisdell), Boston, 1966 | MR | MR

[3] Tuganbaev A.A., Teoriya kolets. Arifmeticheskie moduli i koltsa, MTsNMO, M., 2009

[4] Herstein I. N., Noncommutative rigngs, John Wiley Sons, The Math. Ass. America, 1968 | MR | MR

[5] Lam T.Y., A First Course in Noncommutative Rings, 2001 | MR