Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_2_a10, author = {A. D. Yashunskii}, title = {Finite algebras of {Bernoulli} distributions}, journal = {Diskretnaya Matematika}, pages = {148--161}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a10/} }
A. D. Yashunskii. Finite algebras of Bernoulli distributions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a10/
[1] Bukharaev R. G., “Ob upravlyaemykh generatorakh sluchainykh velichin”, Veroyatnostnye metody i kibernetika, Sbornik rabot NIIMM im. N. G. Chebotareva pri Kazanskom universitete, v. II, Uchen. zap. Kazan. un-ta, 123, no. 6, eds. red. R. G. Bukharaev, Izd-vo Kazanskogo un-ta, Kazan, 1963, 68–87
[2] Kolpakov R. M., “Kriterii porozhdeniya mnozhestv ratsionalnykh veroyatnostei v klasse bulevykh funktsii”, Diskretn. analiz i issled. oper., ser. 1, 6:2 (1999), 41–61 | MR | Zbl
[3] Salimov F. I., “Ob odnoi sisteme obrazuyuschikh dlya algebr nad sluchainymi velichinami”, Izv. vuzov. Matem., 1981, no. 5, 78–82 | Zbl
[4] Skhirtladze R. L., “O metode postroeniya bulevoi sluchainoi velichiny s zadannym raspredeleniem veroyatnostei”, Sb. nauch. tr., Diskretnyi analiz, no. 7, In-t matematiki SO AN SSSR, Novosibirsk, 1966, 71–80
[5] Feller W., An introduction to probability theory and its applications, v. 1, 2nd ed., Wiley, New York, 1957, 461 pp. | MR | MR | Zbl
[6] Yashunskii A. D., O veroyatnostyakh znachenii sluchainykh bulevykh vyrazhenii, dis. kand.fiz.-mat. nauk., MGU imeni M. V. Lomonosova., Moskva, 2006
[7] Lindqvist B., “Ergodic Markov chains with finite convergence time”, Stochastic Processes and their Applications, 11 (1981), 91–99 | DOI | MR | Zbl