Finite algebras of Bernoulli distributions
Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 148-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with sets of Bernoulli distributions which are closed under substitutions of independent random variables into Boolean functions from a given set (an algebra of Bernoulli distributions). A description of all finite algebras of Bernoulli distributions is given.
Keywords: random variable, Bernoulli distribution, finite algebra.
@article{DM_2018_30_2_a10,
     author = {A. D. Yashunskii},
     title = {Finite algebras of {Bernoulli} distributions},
     journal = {Diskretnaya Matematika},
     pages = {148--161},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_2_a10/}
}
TY  - JOUR
AU  - A. D. Yashunskii
TI  - Finite algebras of Bernoulli distributions
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 148
EP  - 161
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_2_a10/
LA  - ru
ID  - DM_2018_30_2_a10
ER  - 
%0 Journal Article
%A A. D. Yashunskii
%T Finite algebras of Bernoulli distributions
%J Diskretnaya Matematika
%D 2018
%P 148-161
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_2_a10/
%G ru
%F DM_2018_30_2_a10
A. D. Yashunskii. Finite algebras of Bernoulli distributions. Diskretnaya Matematika, Tome 30 (2018) no. 2, pp. 148-161. http://geodesic.mathdoc.fr/item/DM_2018_30_2_a10/

[1] Bukharaev R. G., “Ob upravlyaemykh generatorakh sluchainykh velichin”, Veroyatnostnye metody i kibernetika, Sbornik rabot NIIMM im. N. G. Chebotareva pri Kazanskom universitete, v. II, Uchen. zap. Kazan. un-ta, 123, no. 6, eds. red. R. G. Bukharaev, Izd-vo Kazanskogo un-ta, Kazan, 1963, 68–87

[2] Kolpakov R. M., “Kriterii porozhdeniya mnozhestv ratsionalnykh veroyatnostei v klasse bulevykh funktsii”, Diskretn. analiz i issled. oper., ser. 1, 6:2 (1999), 41–61 | MR | Zbl

[3] Salimov F. I., “Ob odnoi sisteme obrazuyuschikh dlya algebr nad sluchainymi velichinami”, Izv. vuzov. Matem., 1981, no. 5, 78–82 | Zbl

[4] Skhirtladze R. L., “O metode postroeniya bulevoi sluchainoi velichiny s zadannym raspredeleniem veroyatnostei”, Sb. nauch. tr., Diskretnyi analiz, no. 7, In-t matematiki SO AN SSSR, Novosibirsk, 1966, 71–80

[5] Feller W., An introduction to probability theory and its applications, v. 1, 2nd ed., Wiley, New York, 1957, 461 pp. | MR | MR | Zbl

[6] Yashunskii A. D., O veroyatnostyakh znachenii sluchainykh bulevykh vyrazhenii, dis. kand.fiz.-mat. nauk., MGU imeni M. V. Lomonosova., Moskva, 2006

[7] Lindqvist B., “Ergodic Markov chains with finite convergence time”, Stochastic Processes and their Applications, 11 (1981), 91–99 | DOI | MR | Zbl