Modules over strongly semiprime rings
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 129-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a ring $A$, the following conditions are equivalent. 1) $A$ is a right strongly semiprime ring. 2) Every right $A$-module which is injective with respect to some essential right ideal of the ring $A$, is an injective module. 3) Every quasi-injective right $A$-module which is injective with respect to some essential right ideal of the ring $A$ is an injective module.
Keywords: injective module; strongly semiprime ring; quasi-injective module.
@article{DM_2018_30_1_a8,
     author = {A. A. Tuganbaev},
     title = {Modules over strongly semiprime rings},
     journal = {Diskretnaya Matematika},
     pages = {129--135},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a8/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Modules over strongly semiprime rings
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 129
EP  - 135
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a8/
LA  - ru
ID  - DM_2018_30_1_a8
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Modules over strongly semiprime rings
%J Diskretnaya Matematika
%D 2018
%P 129-135
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a8/
%G ru
%F DM_2018_30_1_a8
A. A. Tuganbaev. Modules over strongly semiprime rings. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a8/

[1] Goodearl K.R., Ring Theory. Nonsingular Rings and Modules, Marcel Dekker, New York, 1976 | MR

[2] Handelman D., “Strongly semiprime rings”, Pacific J. Math., 60:1 (1975), 115–122 | DOI | MR

[3] Handelman D., Lawrence J., “Strongly prime rings”, Trans. Amer. Math. Soc., 211 (1975), 209–223 | DOI | MR

[4] Kutami M., Oshiro K., “Strongly semiprime rings and nonsingular quasi-injective modules”, Osaka J. Math., 17 (1980), 41–50 | MR

[5] Lawrence J., “A singular primitive ring”, Trans. Amer. Math. Soc., 45:1 (1974), 59–62 | MR

[6] Rowen L.H., Ring Theory. Volume I, Academic Press, Boston, 1988 | MR

[7] Stenström B., Rings of Quotients, Springer, Berlin–New York, 1975 | MR

[8] Tuganbaev A. A., “Characteristic submodules of injective modules over strongly prime rings”, Discrete Math. Appl., 24:4 (2014), 253–256 | DOI | DOI | MR

[9] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR