On the asymptotics of degree structure of configuration graphs with bounded number of edges
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 77-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider configuration graphs with $N$ vertices. The degrees of vertices are independent identically distributed random variables having the power-law distribution with positive parameter $\tau$. We study properties of random graphs such that the sum of vertex degrees does not exceed $n$ and the parameter $\tau$ is a random variable uniformly distributed on the interval $[a,b], 0$. We find limit distributions of the number $\mu_r$ of vertices with degree $r$ for various types of variation of $N,n$ and $r$.
Keywords:
configuration graph, vertex degree, limit distribution.
@article{DM_2018_30_1_a5,
author = {Yu. L. Pavlov and I. A. Cheplyukova},
title = {On the asymptotics of degree structure of configuration graphs with bounded number of edges},
journal = {Diskretnaya Matematika},
pages = {77--94},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/}
}
TY - JOUR AU - Yu. L. Pavlov AU - I. A. Cheplyukova TI - On the asymptotics of degree structure of configuration graphs with bounded number of edges JO - Diskretnaya Matematika PY - 2018 SP - 77 EP - 94 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/ LA - ru ID - DM_2018_30_1_a5 ER -
Yu. L. Pavlov; I. A. Cheplyukova. On the asymptotics of degree structure of configuration graphs with bounded number of edges. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 77-94. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/