On the asymptotics of degree structure of configuration graphs with bounded number of edges
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 77-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider configuration graphs with $N$ vertices. The degrees of vertices are independent identically distributed random variables having the power-law distribution with positive parameter $\tau$. We study properties of random graphs such that the sum of vertex degrees does not exceed $n$ and the parameter $\tau$ is a random variable uniformly distributed on the interval $[a,b], 0$. We find limit distributions of the number $\mu_r$ of vertices with degree $r$ for various types of variation of $N,n$ and $r$.
Keywords: configuration graph, vertex degree, limit distribution.
@article{DM_2018_30_1_a5,
     author = {Yu. L. Pavlov and I. A. Cheplyukova},
     title = {On the asymptotics of degree structure of configuration graphs with bounded number of edges},
     journal = {Diskretnaya Matematika},
     pages = {77--94},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
AU  - I. A. Cheplyukova
TI  - On the asymptotics of degree structure of configuration graphs with bounded number of edges
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 77
EP  - 94
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/
LA  - ru
ID  - DM_2018_30_1_a5
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%A I. A. Cheplyukova
%T On the asymptotics of degree structure of configuration graphs with bounded number of edges
%J Diskretnaya Matematika
%D 2018
%P 77-94
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/
%G ru
%F DM_2018_30_1_a5
Yu. L. Pavlov; I. A. Cheplyukova. On the asymptotics of degree structure of configuration graphs with bounded number of edges. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 77-94. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a5/

[1] Hofstad R., Random graphs and complex networks, Cambridge Univ. Press, Cambridge, 2016, 321 pp.

[2] Faloutsos C., Faloutsos P., Faloutsos M., “On power-law relationships of the internet topology”, Computer Commun. Rev., 29 (1999), 251–252 | DOI

[3] Durrett R., Random graph dynamics, Cambridge Univ. Press, Cambridge, 2007, 212 pp. | MR

[4] Bollobas B., “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J.Combin., 1:4 (1980), 311–316 | DOI | MR

[5] Reittu H., Norros I., “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1-2 (2004), 3–23 | DOI

[6] Pavlov Yu. L., Cheplyukova I. A., “Random graphs of Internet type and the generalised allocation scheme”, Discrete Math. Appl., 18:5 (2008), 447–463 | DOI | DOI | MR | Zbl

[7] Pavlov Yu. L., “On the limit distributions of the vertex degrees of conditional Internet graphs”, Discrete Math. Appl., 19:4 (2009), 349–359 | DOI | DOI | MR

[8] Pavlov Yu. L., “On conditional Internet graphs whose vertex degrees have no mathematical expectation”, Discrete Math. Appl., 20:5-6 (2010), 509–524 | DOI | DOI | MR

[9] Kolchin V. F., Random Graphs, Cambridge University Press, 1998, 268 pp. | MR | MR

[10] Pavlov Yu. L., Khvorostyanskaya E. V., “On the limit distributions of the degrees of vertices in configuration graphs with a bounded number of edges”, Sb. Math., 207:3 (2016), 400–417 | DOI | DOI | MR

[11] Bianconi G., Barabasi A.-L., “Bose–Einstein condensation in complex networks”, Phys. Rev. Lett., 86 (2001), 5632–5635 | DOI

[12] Pavlov Yu. L., “Ob uslovnykh konfiguratsionnykh grafakh so sluchainymi raspredeleniyami stepenei vershin”, Trudy Karelskogo nauchnogo tsentra RAN, 8 (2016), 62–72

[13] Chuprunov A. N., Fazekas I., “An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles”, Discrete Math. Appl., 22:1 (2012), 101–122 | DOI | DOI | MR | MR

[14] Cheplyukova I., Pavlov Yu., “On the dynamics of a configutation graph with random vertex degrees and bounded number of edges”, Proc. Fourth Russian Finnish Symp. discr. math. TUCS Lecture Notes, 26 (2017), 39–41

[15] Prudnikov A. P., Brychkov Yu. A.,Marychev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, Moskva, 1981, 800 pp. | MR

[16] Prudnikov A. P., Brychkov Yu. A.,Marychev O. I., Integraly i ryady, v. 3, Spetsialnye funktsii, dopolnitelnye glavy, Izd. vtoroe, ispr., Fizmatlit, Moskva, 2003, 688 pp. | MR

[17] Ibragimov I. A., Linnik Yu. V., Independent and stationary sequences of random variables, Wolters-Noordhoff, 1971, 443 pp. | MR | MR