On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 66-76
Voir la notice de l'article provenant de la source Math-Net.Ru
The phenomenon of reduction of the set of permutations $H$ arising in theorems on the weak convergence of the number of pairs of $H$-equivalent tuples in a segment of an indecomposable finite Markov chain to discrete distributions of the Poisson type is investigated.
Keywords:
finite Markov chain, permutation group, tuples of states, $H$-equivalent tuples.
@article{DM_2018_30_1_a4,
author = {V. G. Mikhailov},
title = {On the reduction property of the number of $H$-equivalent tuples of states in a discrete {Markov} chain},
journal = {Diskretnaya Matematika},
pages = {66--76},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/}
}
TY - JOUR AU - V. G. Mikhailov TI - On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain JO - Diskretnaya Matematika PY - 2018 SP - 66 EP - 76 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/ LA - ru ID - DM_2018_30_1_a4 ER -
V. G. Mikhailov. On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 66-76. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/