On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain
Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 66-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phenomenon of reduction of the set of permutations $H$ arising in theorems on the weak convergence of the number of pairs of $H$-equivalent tuples in a segment of an indecomposable finite Markov chain to discrete distributions of the Poisson type is investigated.
Keywords: finite Markov chain, permutation group, tuples of states, $H$-equivalent tuples.
@article{DM_2018_30_1_a4,
     author = {V. G. Mikhailov},
     title = {On the reduction property of the number of $H$-equivalent tuples of states in a discrete {Markov} chain},
     journal = {Diskretnaya Matematika},
     pages = {66--76},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/}
}
TY  - JOUR
AU  - V. G. Mikhailov
TI  - On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain
JO  - Diskretnaya Matematika
PY  - 2018
SP  - 66
EP  - 76
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/
LA  - ru
ID  - DM_2018_30_1_a4
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%T On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain
%J Diskretnaya Matematika
%D 2018
%P 66-76
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/
%G ru
%F DM_2018_30_1_a4
V. G. Mikhailov. On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 66-76. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/

[1] Sachkov V. N., Combinatorial Methods in Discrete Mathematics, Cambridge University Press, 1996, 317 pp. | MR | MR

[2] Buravlev S. M., “Matchings up to permutations in sequences of independent trials”, Discrete Math. Appl., 9:1 (1999), 53–78 | DOI | DOI | MR | Zbl

[3] Buravlev S. M., “Matchings up to the permutations which form a Latin rectangle”, Discrete Math. Appl., 10:1 (2000), 23–48 | DOI | DOI | MR | Zbl

[4] Mikhailov V. G., Shoitov A. M., “Structural equivalence of $s$-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 | DOI | DOI | MR | Zbl

[5] Mikhailov V. G., Shoitov A. M., Volgin A. V., “O strukturnoi ekvivalentnosti $s$-tsepochek v tsepyakh Markova”, Extended Abstracts, The IX Int. Petrozavodsk Conf. «Probabilistic Methods in Discrete Mathematics» (Petrozavodsk, Russia), 2016, 57–62

[6] Shoitov A. M., “Ob odnoi osobennosti asimptoticheskogo povedeniya chisla naborov $H$-ekvivalentnykh $n$-tsepochek v neravnoveroyatnoi polinomialnoi skheme”, Tr. po diskr. matem., 7, Fizmatlit, M., 2003, 227–238

[7] Gantmacher F. R., The Theory of Matrices, 1 and 2, Chelsea Publishing Company, New York, 1959, x+374, x+277 pp. | MR | MR

[8] Karlin S., Ost F., “Some monotonicity properties of Shur powers of matrices and related inequalities”, Linear Algebra and Its Applications, 68 (1985), 47–65 | DOI | MR

[9] Mikhaylov V. G., Shoytov A. M., “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | DOI | DOI | MR

[10] Mikhailov V. G., Shoitov A. M., “Mnogokratnye povtoreniya dlinnykh tsepochek v konechnoi tsepi Markova”, Matem. vopr. kriptogr., 6:3 (2015), 117–133 | MR

[11] Mikhaylov V. G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113 | DOI | DOI | MR | Zbl

[12] Zubkov A. M., Kruglov V. I., “On coincidences of tuples in a binary tree with random labels of vertices”, Discrete Math. Appl., 26:3 (2016), 145–153 | DOI | DOI | MR | Zbl

[13] Mikhailov V. G., “O veroyatnosti nalichiya v sluchainoi posledovatelnosti tsepochek s odinakovoi strukturoi”, Diskretn. matem., 28:3 (2016), 97–110 | DOI | MR