Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2018_30_1_a4, author = {V. G. Mikhailov}, title = {On the reduction property of the number of $H$-equivalent tuples of states in a discrete {Markov} chain}, journal = {Diskretnaya Matematika}, pages = {66--76}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/} }
TY - JOUR AU - V. G. Mikhailov TI - On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain JO - Diskretnaya Matematika PY - 2018 SP - 66 EP - 76 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/ LA - ru ID - DM_2018_30_1_a4 ER -
V. G. Mikhailov. On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain. Diskretnaya Matematika, Tome 30 (2018) no. 1, pp. 66-76. http://geodesic.mathdoc.fr/item/DM_2018_30_1_a4/
[1] Sachkov V. N., Combinatorial Methods in Discrete Mathematics, Cambridge University Press, 1996, 317 pp. | MR | MR
[2] Buravlev S. M., “Matchings up to permutations in sequences of independent trials”, Discrete Math. Appl., 9:1 (1999), 53–78 | DOI | DOI | MR | Zbl
[3] Buravlev S. M., “Matchings up to the permutations which form a Latin rectangle”, Discrete Math. Appl., 10:1 (2000), 23–48 | DOI | DOI | MR | Zbl
[4] Mikhailov V. G., Shoitov A. M., “Structural equivalence of $s$-tuples in random discrete sequences”, Discrete Math. Appl., 13:6 (2003), 541–568 | DOI | DOI | MR | Zbl
[5] Mikhailov V. G., Shoitov A. M., Volgin A. V., “O strukturnoi ekvivalentnosti $s$-tsepochek v tsepyakh Markova”, Extended Abstracts, The IX Int. Petrozavodsk Conf. «Probabilistic Methods in Discrete Mathematics» (Petrozavodsk, Russia), 2016, 57–62
[6] Shoitov A. M., “Ob odnoi osobennosti asimptoticheskogo povedeniya chisla naborov $H$-ekvivalentnykh $n$-tsepochek v neravnoveroyatnoi polinomialnoi skheme”, Tr. po diskr. matem., 7, Fizmatlit, M., 2003, 227–238
[7] Gantmacher F. R., The Theory of Matrices, 1 and 2, Chelsea Publishing Company, New York, 1959, x+374, x+277 pp. | MR | MR
[8] Karlin S., Ost F., “Some monotonicity properties of Shur powers of matrices and related inequalities”, Linear Algebra and Its Applications, 68 (1985), 47–65 | DOI | MR
[9] Mikhaylov V. G., Shoytov A. M., “On repetitions of long tuples in a Markov chain”, Discrete Math. Appl., 25:5 (2015), 295–303 | DOI | DOI | MR
[10] Mikhailov V. G., Shoitov A. M., “Mnogokratnye povtoreniya dlinnykh tsepochek v konechnoi tsepi Markova”, Matem. vopr. kriptogr., 6:3 (2015), 117–133 | MR
[11] Mikhaylov V. G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discrete Math. Appl., 26:2 (2016), 105–113 | DOI | DOI | MR | Zbl
[12] Zubkov A. M., Kruglov V. I., “On coincidences of tuples in a binary tree with random labels of vertices”, Discrete Math. Appl., 26:3 (2016), 145–153 | DOI | DOI | MR | Zbl
[13] Mikhailov V. G., “O veroyatnosti nalichiya v sluchainoi posledovatelnosti tsepochek s odinakovoi strukturoi”, Diskretn. matem., 28:3 (2016), 97–110 | DOI | MR