On Stone's renewal theorem for arithmetic distributions
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 84-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Stone's renewal theorem is refined for the case of arithmetic distributions having at least one exponentially decreasing tail. A very general version of the renewal theorem for arithmetic distributions with a semi-multiplicative bound of the residual term is proved.
Keywords: renewal theorem, Stone's theorem, arithmetic distribution, semimultiplicative sequence.
@article{DM_2017_29_2_a6,
     author = {M. S. Sgibnev},
     title = {On {Stone's} renewal theorem for arithmetic distributions},
     journal = {Diskretnaya Matematika},
     pages = {84--95},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - On Stone's renewal theorem for arithmetic distributions
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 84
EP  - 95
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/
LA  - ru
ID  - DM_2017_29_2_a6
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T On Stone's renewal theorem for arithmetic distributions
%J Diskretnaya Matematika
%D 2017
%P 84-95
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/
%G ru
%F DM_2017_29_2_a6
M. S. Sgibnev. On Stone's renewal theorem for arithmetic distributions. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 84-95. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/