On Stone's renewal theorem for arithmetic distributions
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 84-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Stone's renewal theorem is refined for the case of arithmetic distributions having at least one exponentially decreasing tail. A very general version of the renewal theorem for arithmetic distributions with a semi-multiplicative bound of the residual term is proved.
Keywords: renewal theorem, Stone's theorem, arithmetic distribution, semimultiplicative sequence.
@article{DM_2017_29_2_a6,
     author = {M. S. Sgibnev},
     title = {On {Stone's} renewal theorem for arithmetic distributions},
     journal = {Diskretnaya Matematika},
     pages = {84--95},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - On Stone's renewal theorem for arithmetic distributions
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 84
EP  - 95
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/
LA  - ru
ID  - DM_2017_29_2_a6
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T On Stone's renewal theorem for arithmetic distributions
%J Diskretnaya Matematika
%D 2017
%P 84-95
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/
%G ru
%F DM_2017_29_2_a6
M. S. Sgibnev. On Stone's renewal theorem for arithmetic distributions. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 84-95. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a6/

[1] Stone C., “On moment generating functions and renewal theory”, Ann. Math. Statist., 36 (1965), 1298–1301 | DOI | MR | Zbl

[2] Feller W., An Introduction to Probability Theory and Its Applications, v. 2, John Wiley, 1966, 626 pp. | MR | MR | Zbl

[3] Gelfand I., Raikov D., Shilov G., Commutative Normed Rings, Chelsea Publishing Company, New York, 1964, 306 pp. | MR | MR

[4] Stone C., “On characteristic functions and renewal theory”, Trans. Amer. Math. Soc., 120 (1965), 327–342 | DOI | MR | Zbl

[5] Lukacs E., Characteristic Functions, 2nd ed., Charles Griffin, Ltd., 1970, 350 pp. | MR | MR | Zbl

[6] Loev M., Teoriya veroyatnostei, IL, M., 1962, 720 pp. ; ; Loève M., Probability Theory, Van Nostrand, Princeton, New Jersey, USA, 1955, 685 с. | MR | MR | Zbl

[7] Sgibnev M. S., “Renewal theorem in the case of an infinite variance”, Siberian Mathematical Journal, 22:5 (1981), 787–796 | DOI | MR | Zbl

[8] Sgibnev M. S., “Submultiplicative moments of the supremum of a random walk with negative drift”, Statist. Probab. Lett., 32 (1997), 377–383 | DOI | MR | Zbl