Basic positively closed classes in three-valued logic
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 40-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Basic positively closed classes are intersections of positively precomplete classes. We prove that three-valued logic contains exactly 79 basic positively closed classes. Each class is described in terms of endomorphism semigroups.
Keywords: three-valued logic, basic positively closed class.
@article{DM_2017_29_2_a3,
     author = {S. S. Marchenkov and A. V. Chernyshev},
     title = {Basic positively closed classes in three-valued logic},
     journal = {Diskretnaya Matematika},
     pages = {40--52},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a3/}
}
TY  - JOUR
AU  - S. S. Marchenkov
AU  - A. V. Chernyshev
TI  - Basic positively closed classes in three-valued logic
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 40
EP  - 52
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a3/
LA  - ru
ID  - DM_2017_29_2_a3
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%A A. V. Chernyshev
%T Basic positively closed classes in three-valued logic
%J Diskretnaya Matematika
%D 2017
%P 40-52
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a3/
%G ru
%F DM_2017_29_2_a3
S. S. Marchenkov; A. V. Chernyshev. Basic positively closed classes in three-valued logic. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 40-52. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a3/

[1] Danil'chenko A. F., “Parametric expressibility of functions of three-valued logic”, 16, no. 4, 1977, 266–280 | MR | Zbl

[2] Danilchenko A.F., “Parametricheski zamknutye klassy funktsii trekhznachnoi logiki”, Izvestiya AN MSSR, 2 (1978), 13–20 | Zbl

[3] Kuznetsov A.V., “O sredstvakh dlya obnaruzheniya nevyvodimosti i nevyrazimosti”, Logicheskii vyvod, Nauka, Moskva, 1979, 5–33

[4] Marchenkov S. S., “On expressibility of functions of many-valued logic in some logical-functional languages”, Discrete Math. Appl., 9:6 (1999), 563–581 | DOI | DOI | MR | MR | Zbl

[5] Marchenkov S.S., “Kriterii pozitivnoi polnoty v trekhznachnoi logike”, Diskretnyi analiz i issledovanie operatsii. Seriya 1, 13:3 (2006), 27–39 | Zbl

[6] Marchenkov S. S., “Definition of positively closed classes by endomorphism semigroups”, Discrete Math. Appl., 22:5-6 (2012), 511–520 | DOI | DOI | MR | Zbl

[7] Nagorny A. S., “On the distribution of three-valued functions over pre-complete classes”, Moscow Univ. Comput. Math. Cyber., 36:3 (2012), 155–163 | DOI | MR | Zbl

[8] Nagornyi A.S., “O svoistvakh predpolnykh klassov v $P_3$”, Izv. VUZ'ov. Povolzhskii region. Fiz.-mat. nauki, 2012, no. 2, 16–24

[9] Yanov Yu.I., Muchnik A.A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh bazisa”, Doklady AN SSSR, 127:1 (1959), 44–46 | Zbl

[10] Danil'$\check{\rm c}$enko A.F., “On parametrical expressibility of the functions of $k$-valued logic”, Colloq. Math. Soc. J.Bolyai, 28 (1981), 147–159 | MR | Zbl

[11] Post E.L., “Introduction to a general theory of elementary propositions”, Amer. J. Math., 43:4 (1921), 163–185 | DOI | MR | Zbl

[12] Post E.L., “Two-valued iterative systems of mathematical logic”, Annals of Math. Studies, 5 (1941), 1–122 | MR