Limit theorems for bounded branching processes
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions under which the nonextincting trajectories of a discrete time bounded branching process with probability 1: either only finitely many times hit the upper boundary, either infinitely often hit the upper boundary, or coincide with the upper boundary after some random moment.
Keywords: bounded branching process, behavior of trajectories, limit theorems.
@article{DM_2017_29_2_a1,
     author = {G. K. Kobanenko},
     title = {Limit theorems for bounded branching processes},
     journal = {Diskretnaya Matematika},
     pages = {18--28},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a1/}
}
TY  - JOUR
AU  - G. K. Kobanenko
TI  - Limit theorems for bounded branching processes
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 18
EP  - 28
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a1/
LA  - ru
ID  - DM_2017_29_2_a1
ER  - 
%0 Journal Article
%A G. K. Kobanenko
%T Limit theorems for bounded branching processes
%J Diskretnaya Matematika
%D 2017
%P 18-28
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a1/
%G ru
%F DM_2017_29_2_a1
G. K. Kobanenko. Limit theorems for bounded branching processes. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 18-28. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a1/

[1] Afanasev V. I., “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskretnaya matematika, 27:2 (2015), 22–44 ; Afanasiev V. I., “Functional limit theorems for the decomposable branching process with two types of particles”, Discrete Math. Appl., 26:2 (2016), 71–88 | DOI | MR | DOI | MR | Zbl

[2] Afanasev V. I., “O razlozhimom vetvyaschemsya protsesse s dvumya tipami chastits”, Trudy Matem. in-ta im. V. A. Steklova RAN, 294 (2016), 7–19 | DOI | Zbl

[3] Vatutin V.A., Vetvyaschiesya protsessy i ikh primeneniya, lektsionnye kursy NOTs, 8, MIAN, M., 2008 | DOI

[4] Vatutin V. A., “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119 | DOI | DOI | MR | MR | Zbl

[5] Vatutin V. A., “Uslovnaya funktsionalnaya predelnaya teorema dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Matematicheskie zametki, 101:5 (2017), 669–683 | DOI | MR

[6] Vatutin V. A., Dyakonova E. E., “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Trudy Matem. in-ta im. V. A. Steklova RAN, 290, 2015, 114–135 | DOI | Zbl

[7] Vatutin V. A., Dyakonova E. E., “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskretnaya matematika, 27:4 (2015), 26–37 ; Vatutin V. A., Dyakonova E. E., “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 | DOI | DOI | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., “Mnogo li semeistv zhivet dolgo?”, Teoriya veroyatn. i ee primen., 61:4 (2016), 709–732 | DOI

[9] Dyakonova E. E., “Redutsirovannye mnogotipnye kriticheskie vetvyaschiesya protsessy v sluchainoi srede”, Diskretnaya matematika, 28:4 (2016), 58–79 ; Dyakonova E. E., “Multitype branching processes evolving in a Markovian environment”, Discrete Math. Appl., 22:5-6 (2012), 639–664 | DOI | DOI | MR | Zbl

[10] Zubkov A. M., “Usloviya vyrozhdeniya ogranichennogo vetvyaschegosya protsessa”, Matematicheskie zametki, 8:1 (1970), 9–18 | MR

[11] Zubkov A. M., “Uslovie vyrozhdeniya ogranichennogo vetvyaschegosya protsessa s nepreryvnym vremenem”, Teoriya veroyatn. i ee primen., 17:2 (1972), 296–309 ; Zubkov A. M., “A degeneracy condition for bounded continuous-time branching processes”, Theory Probab. Appl., 17:2 (1973), 284–297 | Zbl | DOI | MR

[12] Sevastyanov B. A., Vetvyaschiesya protsessy, M. : Nauka, 1971, 436 pp. | MR

[13] Sevast'yanov B. A., Zubkov A. M., “Controlled branching processes”, Theory Probab. Appl., 19:1 (1974), 14–24 | DOI | MR | MR | Zbl

[14] Athreya K. B., Ney P. E., Branching processes, Berlin: Springer-Verlag, 1972, 287 pp. | MR | Zbl

[15] von Bahr B., Esseen C. G., “Inequalities for the $r$th absolute moment of a sum of random variables”, Ann. Math. Statist., 36:1 (1965), 299-303 | DOI | MR | Zbl

[16] Chu W., Li W. V., Ren Y.-X., “Small value probabilities for supercritical branching processes with immigration”, Bernoulli, 20:1 (2014), 377–393 | DOI | MR | Zbl