Limit distributions of extremal distances to the nearest neighbor
Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems on the limit distributions of the minimal and maximal distances to the nearest neighbor in a sample of random independent points having a uniform distribution on a metric space are proved. As examples of such spaces a multidimensional torus and a binary cube are considered.
Keywords: random points in a metric space, nearest neighbors, distributions of extremal values, binary cube.
@article{DM_2017_29_2_a0,
     author = {A. M. Zubkov and O. P. Orlov},
     title = {Limit distributions of extremal distances to the nearest neighbor},
     journal = {Diskretnaya Matematika},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_2_a0/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - O. P. Orlov
TI  - Limit distributions of extremal distances to the nearest neighbor
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 3
EP  - 17
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_2_a0/
LA  - ru
ID  - DM_2017_29_2_a0
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A O. P. Orlov
%T Limit distributions of extremal distances to the nearest neighbor
%J Diskretnaya Matematika
%D 2017
%P 3-17
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_2_a0/
%G ru
%F DM_2017_29_2_a0
A. M. Zubkov; O. P. Orlov. Limit distributions of extremal distances to the nearest neighbor. Diskretnaya Matematika, Tome 29 (2017) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/DM_2017_29_2_a0/