Combinatorial representations for the scheme of allocations of distinguishable particles into indistinguishable cells
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 126-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a scheme of allocation of distinguishable particles into indistinguishable cells we describe types of representation, numbering and enumerating of its outcomes in terms of the transition graph; this graph allows, in particular, to find the distribution on the set of outcomes. Several methods of statistical simulation of scheme outcomes are described.
Keywords: allocation of particles into cells, indistinguishable cells, statistical simulation.
@article{DM_2017_29_1_a9,
     author = {N. Yu. Enatskaya},
     title = {Combinatorial representations for the scheme of allocations of distinguishable particles into indistinguishable cells},
     journal = {Diskretnaya Matematika},
     pages = {126--135},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a9/}
}
TY  - JOUR
AU  - N. Yu. Enatskaya
TI  - Combinatorial representations for the scheme of allocations of distinguishable particles into indistinguishable cells
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 126
EP  - 135
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a9/
LA  - ru
ID  - DM_2017_29_1_a9
ER  - 
%0 Journal Article
%A N. Yu. Enatskaya
%T Combinatorial representations for the scheme of allocations of distinguishable particles into indistinguishable cells
%J Diskretnaya Matematika
%D 2017
%P 126-135
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_1_a9/
%G ru
%F DM_2017_29_1_a9
N. Yu. Enatskaya. Combinatorial representations for the scheme of allocations of distinguishable particles into indistinguishable cells. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 126-135. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a9/

[1] Sachkov V. N., Vvedenie v kombinatornye metody diskretnoi matematiki, MTsNMO, M., 2004, 384 pp.

[2] Enatskaya N. Yu., Khakimullin E. R., Stokhasticheskoe modelirovanie, MIEM, M., 2012, 185 pp.

[3] Endryus G., Teoriya razbienii, Nauka, M., 1982, 256 pp. ; Andrews G. E., The Theory of Partitions, Encyclopedia of Mathematics and Its Applications, 2, Addison-Wesley, 1976, 255 pp. | MR | MR | Zbl

[4] Mansour T., Combinatorics of set partitions, CRC Press, 2012, 600 pp. | MR | Zbl

[5] Orlov M., Efficient generation of set partitions, Technical Report, 2002 https://www.cs.bgu.ac.il/õrlovm/papers/partitions.pdf