Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_1_a4, author = {R. M. Kolpakov and M. A. Posypkin}, title = {On the best choice of a~branching variable in the subset sum problem}, journal = {Diskretnaya Matematika}, pages = {51--58}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a4/} }
R. M. Kolpakov; M. A. Posypkin. On the best choice of a~branching variable in the subset sum problem. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 51-58. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a4/
[1] Martello S., Toth P., Knapsack Problems, J. Wiley Sons Ltd, Chichester, 1990, 296 pp. | MR | Zbl
[2] Kellerer H., Pfershy U., Pisinger D., Knapsack Problems, Springer-Verlag, Berlin–Heidelberg, 2004, 548 pp. | MR | Zbl
[3] Kolpakov R. M., Posypkin M. A., “Asimptoticheskaya otsenka slozhnosti metoda vetvei i granits s vetvleniem po drobnoi peremennoi dlya zadachi o rantse”, Diskretn. analiz i issled. operatsii, 15:1 (2008), 58–81 | MR | Zbl
[4] Sigal I. Kh., Ivanova A. P., Vvedenie v prikladnoe diskretnoe programmirovanie, Fizmatlit, M., 2002, 240 pp.
[5] Lazarev A. A., “Graphic approach to combinatorial optimization”, Automation and Remote Control, 68:4 (2007), 583–592 | DOI | MR | Zbl
[6] Finkelshtein Yu. Yu., Priblizhennye metody i prikladnye zadachi diskretnogo programmirovaniya, Nauka, M., 1976, 265 pp.
[7] Grishukhin V. P., “Effektivnost metoda vetvei i granits v zadachakh s bulevymi peremennymi”: Fridman A. A., Issledovaniya po diskretnoi optimizatsii, Nauka, M., 1976, 203–230 | MR
[8] Lazarev A. A., Werner F., “A graphical realization of the dynamic programming method for solving NP-hard combinatorial problems”, Comput. Math. Appl., 58:4 (2009), 619–631 | DOI | MR | Zbl
[9] Kolpakov R. M., Posypkin M. A., “Upper and lower bounds for the complexity of the branch and bound method for the knapsack problem”, Discrete Math. Appl., 20:1 (2010), 95–112 | DOI | DOI | MR | Zbl
[10] Kolpakov R. M., Posypkin M. A., “Verkhnyaya otsenka chisla vetvlenii dlya zadachi o summe podmnozhestv”, Mat. voprosy kibernetiki, 18 (2013), 213–226