On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 10-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Recently it was shown that a distance-regular graph in which neighbourhoods of vertices are strongly regular with parameters (99,14,1,2) has intersection array $\{99,84,1;1,14,99\}$, $\{99,84,1;1,12,99\}$ or $\{99,84,30;1,6,54\}$. In the present paper we find possible automorphisms of a graph with the intersection array $\{99,84,30;1,6,54\}$. It is shown, in particular, that such a graph is not point-symmetric.
Keywords:
distance-regular graph, strongly regular graph, automorphism of a graph.
@article{DM_2017_29_1_a1,
author = {K. S. Efimov and A. A. Makhnev},
title = {On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$},
journal = {Diskretnaya Matematika},
pages = {10--16},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/}
}
TY - JOUR
AU - K. S. Efimov
AU - A. A. Makhnev
TI - On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$
JO - Diskretnaya Matematika
PY - 2017
SP - 10
EP - 16
VL - 29
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/
LA - ru
ID - DM_2017_29_1_a1
ER -
K. S. Efimov; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 10-16. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/