Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2017_29_1_a1, author = {K. S. Efimov and A. A. Makhnev}, title = {On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$}, journal = {Diskretnaya Matematika}, pages = {10--16}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/} }
TY - JOUR AU - K. S. Efimov AU - A. A. Makhnev TI - On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$ JO - Diskretnaya Matematika PY - 2017 SP - 10 EP - 16 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/ LA - ru ID - DM_2017_29_1_a1 ER -
K. S. Efimov; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 10-16. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/
[1] Makhnev A. A., “On graphs whose local subgraphs are strongly regular with parameters $(99,14,1,2)$”, Doklady Mathematics, 88:3 (2013), 737–740 | DOI | DOI | MR | Zbl
[2] Ageev P. S., Makhnev A. A., “Automorphisms of a graph with intersection array $\{99,84,1;1,14,99\}$”, Doklady Mathematics, 90:2 (2014), 525–528 | DOI | DOI | MR | Zbl
[3] Makhnev A. A., Minakova I. M., “On automorphisms of strongly regular graphs with parameters $\lambda=1$, $\mu=2$”, Discrete Math. Appl., 14:2 (2004), 201–210 | DOI | DOI | MR | MR | Zbl
[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New-York, 1989, 495 pp. | MR | Zbl
[5] Cameron P. J., Permutation Groups, Cambridge University Press, Cambridge, 1999, 220 pp. | MR | Zbl
[6] Gavrilyuk A. L., Makhnev A. A., “On automorphisms of distance-regular graphs with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | MR | Zbl