On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$
Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently it was shown that a distance-regular graph in which neighbourhoods of vertices are strongly regular with parameters (99,14,1,2) has intersection array $\{99,84,1;1,14,99\}$, $\{99,84,1;1,12,99\}$ or $\{99,84,30;1,6,54\}$. In the present paper we find possible automorphisms of a graph with the intersection array $\{99,84,30;1,6,54\}$. It is shown, in particular, that such a graph is not point-symmetric.
Keywords: distance-regular graph, strongly regular graph, automorphism of a graph.
@article{DM_2017_29_1_a1,
     author = {K. S. Efimov and A. A. Makhnev},
     title = {On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$},
     journal = {Diskretnaya Matematika},
     pages = {10--16},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/}
}
TY  - JOUR
AU  - K. S. Efimov
AU  - A. A. Makhnev
TI  - On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$
JO  - Diskretnaya Matematika
PY  - 2017
SP  - 10
EP  - 16
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/
LA  - ru
ID  - DM_2017_29_1_a1
ER  - 
%0 Journal Article
%A K. S. Efimov
%A A. A. Makhnev
%T On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$
%J Diskretnaya Matematika
%D 2017
%P 10-16
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/
%G ru
%F DM_2017_29_1_a1
K. S. Efimov; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$. Diskretnaya Matematika, Tome 29 (2017) no. 1, pp. 10-16. http://geodesic.mathdoc.fr/item/DM_2017_29_1_a1/

[1] Makhnev A. A., “On graphs whose local subgraphs are strongly regular with parameters $(99,14,1,2)$”, Doklady Mathematics, 88:3 (2013), 737–740 | DOI | DOI | MR | Zbl

[2] Ageev P. S., Makhnev A. A., “Automorphisms of a graph with intersection array $\{99,84,1;1,14,99\}$”, Doklady Mathematics, 90:2 (2014), 525–528 | DOI | DOI | MR | Zbl

[3] Makhnev A. A., Minakova I. M., “On automorphisms of strongly regular graphs with parameters $\lambda=1$, $\mu=2$”, Discrete Math. Appl., 14:2 (2004), 201–210 | DOI | DOI | MR | MR | Zbl

[4] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New-York, 1989, 495 pp. | MR | Zbl

[5] Cameron P. J., Permutation Groups, Cambridge University Press, Cambridge, 1999, 220 pp. | MR | Zbl

[6] Gavrilyuk A. L., Makhnev A. A., “On automorphisms of distance-regular graphs with intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | MR | Zbl